ЭВ-200.000. 000.002.01P3 23.07.2025 V2.0.2

ЭЛЕКТРОННЫЙ БЛОК РАСХОДОМЕРА-СЧЕТЧИКА ВИХРЕВОГО «ЭМИС-ВИХРЬ 200 (ЭВ-200)» (РАСШИРЕННАЯ ВЕРСИЯ «В», ВЕРСИЯ С ВЫЧИСЛИТЕЛЕМ «ВВ»)

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Возможность имитационной поверки

ЖК дисплей с оптическими кнопками

Встроенная самодиагностика

Подключение по USB

Диагностика по NAMUR NE 107

ww.emis-kip.ru

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ЭЛЕКТРОННОГО БЛОКА (РАСШИРЕННАЯ ВЕРСИЯ «В», ВЕРСИЯ С ВЫЧИСЛИТЕЛЕМ «ВВ»)

Электронный блок расходомеров-счетчиков вихревых «ЭМИС-ВИХРЬ 200 (ЭВ-200)» (в дальнейшем «электронный блок») входит в состав расходомера-счетчика вихревого «ЭМИС-ВИХРЬ 200 (ЭВ-200)» (в дальнейшем «расходомер-счетчик», «расходомер»).

Данное руководство предназначено для изучения устройства, работы, правил эксплуатации, технического обслуживания электронных блоков.

Перечень документов, на которые даны ссылки в настоящем руководстве, приведён в *приложении А.*

Раздел информационная безопасность описан в пункте 9.2 «Система уровней доступа».

Любое использование материала настоящего издания, полное или частичное, без письменного разрешения правообладателя запрещается.

Изготовитель оставляет за собой право вносить изменения в конструкцию расходомерасчетчика, не ухудшающие его потребительских качеств, без предварительного уведомления.

СОДЕРЖАНИЕ

	1
1 НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ	4
2 УКАЗАНИЯ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ	4
3 ОПИСАНИЕ ИЗДЕЛИЯ	
4 ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ	
5 ОБЕСПЕЧЕНИЕ ВЗРЫВОЗАЩИТЫ	/
5.1 СРЕДСТВА ОБЕСПЕЧЕНИЯ ВЗРЫВОЗАЩИТЫ ВИДА «ИСКРОБЕЗОПАСНАЯ ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ»	7
5.2 МОНТАЖ С ОБЕСПЕЧЕНИЕМ ВЗРЫВОЗАЩИТЫ	
6. МОНТАЖ	
6.1 ТРЕБОВАНИЯ К МОНТАЖУ	
6.2 Поворот электронного блока	
6.3 Разъемное дистанционное исполнение электронного блока	10
7. ПАРАМЕТРЫ ЭЛЕКТРИЧЕСКОГО ПИТАНИЯ, ВХОДНЫЕ И ВЫХОДНЫЕ	
СИГНАЛЫ ЭЛЕКТРОННОГО БЛОКА	11
7.1 Требования по электропитанию	
7.2 Входные и выходные сигналы электронного блока	
7.3 ЧАСТОТНО-ИМПУЛЬСНЫЙ ИЛИ ДИСКРЕТНЫЙ ВЫХОДНОЙ СИГНАЛ	
7.4 Аналоговый (токовый) выходной сигнал с цифровым протоколом HART	
7.5 ЦИФРОВЫЕ ВЫХОДПЫЕ СИГНАЛЫ	
7.7 Вход для термометра сопротивления	
7.8 Аналоговый (токовый) вход	
8. ЭЛЕКТРИЧЕСКОЕ ПОДКЛЮЧЕНИЕ (ЭЛЕКТРОМОНТАЖ)	19
8.1 Необходимый инструмент	19
8.2 ТРЕБОВАНИЯ К СОЕДИНИТЕЛЬНОМУ КАБЕЛЮ	
8.3 ПОДКЛЮЧЕНИЕ ЭЛЕКТРОННОГО БЛОКА	
8.4 Схемы электрического подключения	
9. ЭКСПЛУАТАЦИЯ	
9.1 Ввод в эксплуатацию	
9.2 Система уровней доступа	
9.3 УПРАВЛЕНИЕ С ДИСПЛЕЯ9.4 РАБОТА С РАСХОДОМЕРОМ ЧЕРЕЗ ИНТЕРФЕЙСЫ RS-485/USB	
9.5 Настройка электронного блока с вычислителем «ВВ»	
9.6 Настройка параметров технологического процесса	
9.7 Фильтрация входного сигнала	
9.8 Возможные неисправности и способы их устранения	
9.9 Диагностика (NAMUR NE 107)	49
9.10 Сброс (обнуление) счетчиков	
ПРИЛОЖЕНИЕ А. ПЕРЕЧЕНЬ ССЫЛОЧНЫХ ДОКУМЕНТОВ	52
ПРИЛОЖЕНИЕ Б. ЧЕРТЕЖ СРЕДСТВ ОБЕСПЕЧЕНИЯ ВЗРЫВОЗАЩИТЫ	= 4
РАСХОДОМЕРОВ	
ПРИЛОЖЕНИЕ В. ОПИСАНИЕ ПРОТОКОЛА «MODBUS»	
ПРИЛОЖЕНИЕ Г. ОПИСАНИЕ ПРОТОКОЛА «HART»	80

1 НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящее руководство содержит информацию о монтаже, подключении и настройке электронного блока.

Данное руководство предназначено для специалистов, ответственных за электрическое подключение, ввод в эксплуатацию, настройку и эксплуатацию расходомеров.

В данном руководстве рассматриваются расширенная версия электронных блоков «В» и версия с вычислителем «ВВ». Версия с вычислителем «ВВ» отличается от расширенной версии «В» наличием функции вычислителя.

Расходомер без функции вычислителя предназначен для измерения объёма и объёмного расхода жидкостей, газов и агрессивных сред при рабочем давлении и рабочей температуре в различных отраслях промышленности и в системах коммерческого учета, в составе счетчиков газа и пара. Расходомер с функцией вычислителя также позволяет вычислять массовый расход насыщенного и перегретого пара, объёмный расход, приведенный к стандартным условиям, для природного газа, попутного нефтяного газа, воздуха и др. газов.

Подробная информация о принципе действия, технических и метрологических характеристиках представлена в руководстве по эксплуатации расходомера-счетчика вихревого «ЭМИС-ВИХРЬ 200 (ЭВ-200)». Перечень руководств по эксплуатации расходомеров представлен в таблице 1.1.

Таблица 1.1 – Перечень руководств по эксплуатации расходомеров-счетчиков

Обозначение документа	Наименование
ЭВ-200.000.000.000.00РЭ	Преобразователи расхода вихревые «ЭМИС-ВИХРЬ 200 (ЭВ-200)»
Часть 1	Модификации ЭВ-200
ЭВ-200.000.000.000.00РЭ Часть 2	Преобразователи расхода вихревые «ЭМИС-ВИХРЬ 200 (ЭВ-200)» Модификации ЭВ-200-ППД
ЭВ-200.000.000.000.00РЭ	Преобразователи расхода вихревые «ЭМИС-ВИХРЬ 200 (ЭВ-200)»
Часть 3	Модификации ЭВ-205
ЭВ-200.000.100.000.00РЭ	Расходомеры-счетчики вихревые «ЭМИС-ВИХРЬ 200» Модификации ЭВ-
Часть 1	200
ЭВ-200.000.100.000.00РЭ	Расходомеры-счетчики вихревые «ЭМИС-ВИХРЬ 200» Модификации ЭВ-
Часть 2	200-ППД
ЭВ-200.000.100.000.00РЭ	Расходомеры-счетчики вихревые «ЭМИС-ВИХРЬ 200» Модификации ЭВ-
Часть 3	205

Перед началом работы с электронным блоком необходимо:

- ознакомиться с настоящим руководством по эксплуатации электронного блока и руководством по эксплуатации расходомера-счетчика вихревого «ЭМИС-ВИХРЬ 200 (ЭВ-200)» (см. *таблицу 1.1*);
- убедиться, что расходомер смонтирован в соответствии с руководством по эксплуатации расходомера;
- ознакомиться со стандартами организации и страны, в которой осуществляется эксплуатация расходомера;

2 УКАЗАНИЯ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ

К монтажу, эксплуатации, техническому обслуживанию расходомеров должны допускаться лица, изучившие настоящее РЭ и прошедшие инструктаж по технике безопасности при работе с электротехническими устройствами.

Все операции по эксплуатации и поверке расходомеров необходимо выполнять с соблюдением требований по защите от статического электричества.

При проведении монтажных, пуско-наладочных работ и ремонта запрещается:

- производить замену электрорадиоэлементов при подключенном напряжении питания расходомера;
- подключать расходомер к источнику питания с выходным напряжением, отличающимся от указанного в настоящем РЭ;
- использовать электроприборы, электроинструменты без их подключения к шине защитного заземления, а также в случае их неисправности.

При проведении монтажных работ опасным фактором является: напряжение питания переменного тока с действующим значением 220 В и выше, частотой 50 Гц (при расположении внешнего источника питания расходомера в непосредственной близости от места установки).

Эксплуатация расходомеров взрывозащищенного исполнения должна производиться согласно требованиям главы 7.3 ПУЭ и других нормативных документов, регламентирующих применение электрооборудования во взрывоопасных условиях.

Перечень нормативно-технической документации, регламентирующей правила монтажа и эксплуатации расходомера, представлен в *таблице 2.1*.

Таблица 2.1 – Перечень нормативно-технической информации

Обозначение	Наименование	Пункт
ГОСТ 31610.11-2014	Электрооборудование для взрывоопасных газовых сред. Часть 11. Искробезопасная электрическая цепь і	1.1, 1.5, 1.6, 2.4.2
ГОСТ 31610.1-2014	Электрооборудование для взрывоопасных газовых сред. Часть 1. взрывонепроницаемые оболочки "D"	1.1, 1.5, 2.4.2
ГОСТ Р 52931-2008	Приборы контроля и регулирования технологических процессов. Общие технические условия	1.3.1
FOCT 15150-69	Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды	1.3.8
ГОСТ 31610.0-2014	Электрооборудование для взрывоопасных газовых сред. Часть 0. Общие требования	1.5, 2.4.2
FOCT 31610.17-2012	Электрооборудование для взрывоопасных газовых сред. Часть 17. Проверка и техническое обслуживание электроустановок во взрывоопасных зонах (кроме подземных выработок)	
ΓΟCT 14254-2015	Степени защиты, обеспечиваемые оболочками (Код IP)	1.5
ПУЭ	Правила устройства электроустановок	2.2, 2.4.2
пээп	Правила эксплуатации электроустановок потребителей	2.4.2

3 ОПИСАНИЕ ИЗДЕЛИЯ

Расходомеры по методу измерения подразделяются на полнопроходные (ЭВ-200) и погружные (ЭВ-205). Полнопроходной расходомер-счетчик (см. *рисунок 3.1*) состоит из проточной части (1) и электронного блока (2). Проточная часть представляет собой полый цилиндр, в поперечном сечении которого установлено тело обтекания (3). За телом обтекания расположен чувствительный элемент (4) (сенсор). Электронный блок (2) крепится на цилиндре проточной части с помощью трубчатой стойки (5). Электронные платы размещены в электронном блоке.

Погружной расходомер (см. *рисунок 3.1*) состоит из датчика (6), штанги (7), приварного патрубка (8) и электронного блока (2). Датчик конструктивно выполнен как проточный вихревой расходомер и измеряет скорость потока в одной точке.

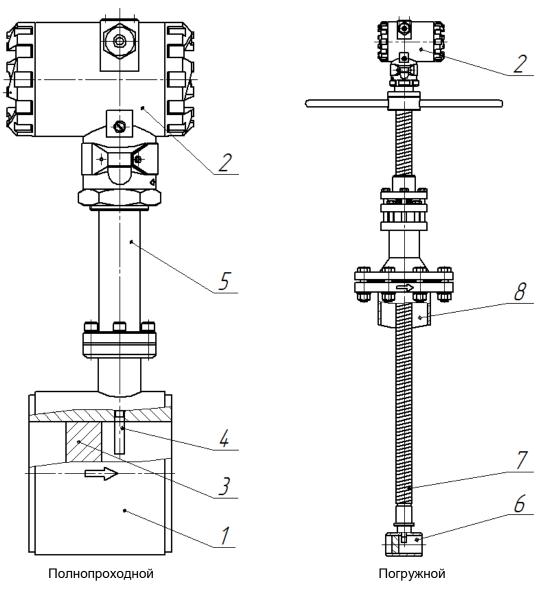


Рисунок 3.1 – Устройство расходомеров

По месту установки электронного блока расходомеры могут быть с совместным и дистанционным размещением проточной части и электронного блока. Внешний вид электронного блока дистанционного исполнения показан на *рисунке 3.2*.

В расходомере реализован метод измерения расхода, основанный на измерении частоты вихрей. В цилиндре проточной части установлено тело обтекания, которое вызывает образование вихрей в набегающем потоке измеряемой среды. Вихри распространяются попеременно вдоль и сзади каждой из сторон тела обтекания. Частота срыва вихрей с тела обтекания пропорциональна скорости потока среды, а, следовательно, пропорциональна объёмному расходу измеряемой среды. Эти завихрения вызывают колебания давления измеряемой среды по обе стороны крыла сенсора. Крыло передает пульсации давления на пьезоэлемент. Пьезоэлемент преобразует пульсации в электрические сигналы. Электронный блок формирует выходные сигналы расходомера после усиления, фильтрации, преобразований и цифровой обработки сигнала.

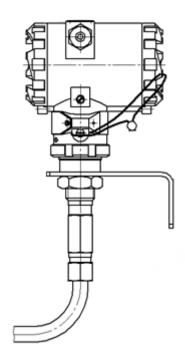


Рисунок 3.2 – Дистанционное исполнение электронного блока

4 ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ

Электронный блок поставляется в составе расходомера. Требования к хранению и транспортированию расходомера указаны в руководстве по эксплуатации расходомера (см. *таблицу* 1.1).

5 ОБЕСПЕЧЕНИЕ ВЗРЫВОЗАЩИТЫ

Описание взрывозащищенных исполнений расходомеров приведено в руководстве по эксплуатации расходомера (см. *таблицу 1.1*).

5.1 Средства обеспечения взрывозащиты вида «искробезопасная электрическая цепь»

Взрывозащита вида «искробезопасная электрическая цепь» уровня «ib» / «ia» обеспечивается следующими средствами:

- внешнее электрическое питание должно осуществляться только от искробезопасного блока (барьера) с выходными цепями уровня «ib» или «ia» и электрическими параметрами, соответствующими требованиям ГОСТ 31610.11-2014 для искробезопасных цепей электрооборудования подгруппы IIB/IIC для расходомеров исполнений **ExB, ExiaB, ExiaC, PBИ, PO**;
- подключение внешних устройств к цифровому, частотному, токовому выходам расходомера должно осуществляться только через барьеры взрывозащиты с цепями уровня «ib» или «ia» и электрическими параметрами, соответствующими требованиям ГОСТ 31610.11-2014 для искробезопасных цепей электрооборудования подгруппы IIB/IIC для расходомеров исполнений **ExB**, **ExiaB**, **ExiaC**, **PBИ**, **PO**. Для расходомеров исполнения **PO-PB** подключение внешних устройств к цифровому выходу RS485 должно осуществляться только через барьеры взрывозащиты с цепями

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ЭЛЕКТРОННОГО БЛОКА (РАСШИРЕННАЯ ВЕРСИЯ «В», ВЕРСИЯ С ВЫЧИСЛИТЕЛЕМ «ВВ»)

уровня «ia» и электрическими параметрами, соответствующими требованиям ГОСТ 31610.11-2014 для искробезопасных цепей.

Схема подключения расходомеров взрывозащищенных исполнений

ЕхВ, ЕхіаВ, ЕхіаС, РВИ, РО, РО-РВ представлена в п.8.4.

Входные параметры цепи питания и цепей выходных сигналов расходомеров исполнений **ExB**, **ExiaB**, **ExiaC**, **PBИ**, **PO**, **PO-PB** приведены в *maблице 5.1-5.3*.

Таблица 5.1 – Искробезопасные параметры цепей расходомеров исполнений ExB, ExiaB, ExiaC, PBИ, PO-PB для электрической цепи

	Значение параметра для цепи					
Наименование параметра	питания	токового сигнала	частотного / импульсного сигнала	цифрового сигнала RS485		
Максимальное входное напряжение Ui, B	28	28	28	12		
Максимальный входной ток li, A	0,41	0,11	0,11	0,9		
Максимальная входная мощность Рі, Вт	2,2	0,8	0,8	1,8		
Максимальная внутренняя емкость Сі, мкФ	0,01	0,01	0,01	0,1		
Максимальная внутренняя индуктивность Li, мГн	0,01	0,01	0,01	0,01		

Таблица 5.2 – Искробезопасные параметры цепей расходомеров исполнений РО для электрической цепи

	Значение параметра для цепи					
Наименование параметра	питания	токового сигнала	частотного / импульсного сигнала	цифрового сигнала RS485		
Максимальное входное напряжение Ui, B	16,5	28	28	12		
Максимальный входной ток li, A	2,5	0,11	0,11	0,9		
Максимальная входная мощность Рі, Вт	2,2	0,8	0,8	1,8		
Максимальная внутренняя емкость Сі, мкФ	0,01	0,01	0,01	0,1		
Максимальная внутренняя индуктивность Li, мГн	0,01	0,01	0,01	0,01		

Таблица 5.3 – Искробезопасные параметры цепей расходомеров исполнений ExB, ExiaB, PO, PBИ, PO-PB для цепи цифрового сигнала RS485

Наименование параметра	Значение параметра для цепи		
Максимальное выходное напряжение Uo, B	4,1		
Максимальный выходной ток Io, A	0,21		
Максимальная выходная мощность Ро, Вт	0,22		
Максимальная внешняя емкость Со, мкФ	100		
Максимальная внешняя индуктивность Lo, мГн	1,8		

5.2 Монтаж с обеспечением взрывозащиты

Перед монтажом электронный блок должен быть осмотрен. Особое внимание следует обратить на маркировку взрывозащиты, предупредительные надписи, отсутствие повреждений электронного блока, наличие заземляющего зажима, наличие средств уплотнения для кабелей и крышек, состояние подключаемого кабеля.

Около наружного заземляющего зажима расходомеров имеется рельефный знак заземления. На съемных крышках электронного блока расходомеров имеется предупредительная надпись: «Открывать, отключив от сети».

При монтаже расходомеров исполнения Вн необходимо проверить состояние взрывозащищенных поверхностей деталей, подвергаемых разборке. Царапины, вмятины, сколы на поверхностях, обозначенных меткой «Взрыв» на чертеже средств обеспечения взрывозащиты, приведенном в приложении Б, не допускаются.

при подключении расходомера используется только один неиспользуемый ввод должен быть заглушен. Для глушения неиспользуемого ввода расходомеров исполнения Вн допускается использовать только заглушки, поставляемые изготовителем.

При использовании источников искробезопасного питания, имеющих гальваническую связь с землей или нагрузкой, заземление каких-либо цепей не допускается.

После завершения электрического монтажа необходимо закрыть крышки электронного блока и застопорить их стопорами, согласно чертежу **приложения Б**.

Монтаж, эксплуатация и техническое обслуживание электронного блока должны проводиться в соответствии с ПУЭ, ГОСТ 31610.17-2012 «Правила технической эксплуатации электроустановок потребителей», «Приказ Минтруда России от 24 июля 2013г №328н», ВСН332-74, Приказ от 19 ноября 2013 года N 550 «Правила безопасности в угольных шахтах» и Федеральными нормами и правилами в области промышленной безопасности «Правила безопасности при ведении горных работ и переработке твердых полезных ископаемых» и данным руководством по эксплуатации.

Монтаж расходомеров взрывозащищенных исполнений РВ, РВИ, РО, РО-РВ необходимо производить в соответствии с данным руководством и инструкцией по монтажу взрывозащищенных коробок, поставляемой в комплекте.

6. МОНТАЖ

6.1 Требования к монтажу

Электронный блок поставляется в составе расходомера. Требования к монтажу расходомера указаны в руководстве по эксплуатации расходомера (см. *таблицу 1.1*).

6.2 Поворот электронного блока

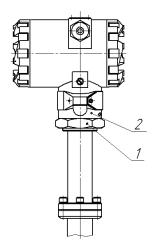


Рисунок 6.1 – Поворот электронного блока

Для удобства электромонтажа и считывания показаний допускается повернуть электронный блок расходомера на угол не более 90° относительно его исходного положения, заданного на заводеизготовителе. Это необходимо для того, чтобы не перекручивания проводов допустить для сохранения положения уплотнительного кольца внутри электронного блока.

Для поворота необходимо ослабить контргайку (см. рисунок **6.1**). повернуть электронный блок 2 в нужную сторону на угол не более 90°, затем плотно затянуть контргайку для обеспечения герметичности.

6.3 Разъемное дистанционное исполнение электронного блока

В расходомерах с разъемным дистанционным исполнением электронного блока малогабаритный разъем 3 находится внутри переходника 2 в верхней части стойки 1 (см. *рисунок 6.2*).

Для отсоединения электронного блока с дистанционным кабелем 5 от стойки расходомера 1 необходимо ослабить кабельный ввод 4 в верхней части стойки, открутить кабельный ввод от переходника стойки, вытянуть провода с разъемом 3 и отсоединить разъем.

При подключении разъема необходимо аккуратно уложить провода с разъемом внутри переходника, не пережимая провода, затем плотно закрутить кабельный ввод.

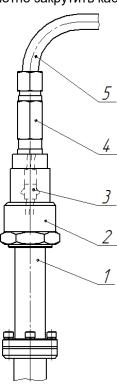


Рисунок 6.2 - Разъемное дистанционное исполнение

7. ПАРАМЕТРЫ ЭЛЕКТРИЧЕСКОГО ПИТАНИЯ, ВХОДНЫЕ И ВЫХОДНЫЕ СИГНАЛЫ ЭЛЕКТРОННОГО БЛОКА

7.1 Требования по электропитанию

Электрическое питание расходомеров взрывозащищенных исполнений **ExB, ExiaB, ExiaC, PBИ, PO** осуществляется от источника питания постоянного тока напряжением от 12 до 25,6 В. Электрическое питание расходомеров общепромышленного исполнения, исполнений **Bн** и **PB, PO-PB** осуществляется от источника питания постоянного тока напряжением от 12 до 27 В.

Мощность, потребляемая электронным блоком, в зависимости от исполнения приведена в *таблице 7.1*.

Таблица 7.1 – Потребляемая мощность

Исполнение по наличию индикатора	Исполнение по взрывозащите	Потребляемая мощность, Вт
без индикатора	общепромышленное,	0,9
индикатор СИМ	Вн, РВ	3,4
индикатор СИО		3,5
без индикатора	ExB,	0,9
индикатор СИМ	ExiaB, ExiaC,	0,9
индикатор СИО	РВИ, РО, РО-РВ	1,0

7.2 Входные и выходные сигналы электронного блока

Электронный блок имеет цифровые и аналоговые выходные сигналы в различных исполнениях. Аналоговые выходные сигналы электронного блока:

- частотно-импульсный или дискретный выходной сигнал;
- аналоговый (токовый) выходной сигнал 4-20мА.

Цифровые выходные сигналы электронного блока:

- интерфейс RS-485 с протоколом Modbus RTU;
- интерфейс USB с протоколом Modbus RTU (используется для технологической настройки);
- токовая петля 4-20мA с протоколом HART.

Входные сигналы электронного блока:

- имитационный вход;
- вход для термометра сопротивления;
- аналоговый (токовый) входной сигнал 4-20мА для подключения датчика давления.

7.3 Частотно-импульсный или дискретный выходной сигнал

Выход может быть настроен в режим частотного, импульсного или дискретного сигналов. Выходной сигнал может принимать два логических состояния: "замкнуто"/"разомкнуто". Выход является пассивным и имеет тип «открытый коллектор».

В режиме **«Частотный выход»** частота выходного сигнала пропорциональна значению текущей переменной. Текущей переменной может объявляться: объёмный расход, объёмный расход приведенный к Ст.У., массовый расход, абсолютное давление, температура.

Примечание: Здесь и далее Ст.У. – стандартные условия (Атмосферное давление 101325 Па = 760 мм. рт. ст. и температура воздуха 293,15 K = 20 $^{\circ}$ C).

Минимальное значение частоты на частотном выходе (0 Гц) соответствует минимальному значению текущей переменной. Максимальное значение частоты на частотном выходе (1000 Гц) соответствует максимальному значению текущей переменной.

В режиме **«Импульсный выход»** каждый импульс на выходе соответствует определенному количеству единиц текущей переменной, называемому ценой импульса. Текущей переменной может быть объём, объём приведенный к Ст.У. или масса. По заказу потребителя может быть установлена необходимая цена импульса и минимальная длительность импульса. Максимальная частота выходного сигнала в импульсном режиме – 500 Гц.

По умолчанию расходомеры ЭВ-200, ЭВ-205 настраиваются на частотный режим, а расходомеры ЭВ200-ППД – на импульсный режим работы выхода.

В *таблице 7.2* приведены типовые и минимальные значения цены импульса *т* для измерения жидких и газообразных сред для объемного расхода.

Минимальная цена импульса *т*при этом определяется по *формуле 7.1*.

$$m = (Q'наиб *2) / (3,6 * 1000 Гц), л,$$
 (7.1)

где *Q'наиб* - максимально возможное значение расхода для данного типоразмера расходомера для выбранной текущей переменной, м³/ч; См3/ч; т/ч (регистр Modbus 40007).

Таблица 7.2 – Типовое значение цены импульса т на частотно-импульсном выходе

	Жидкость					Газообразная среда			
Типоразмер		Цена	на импульса m, л			Цен	а импульса і	т, л	
(исполнение)	Q'наиб, м ³ /ч	Част.	Имп. режим		Q'наиб, м ³ /ч	Част.	Имп. ре	миж	
		режим	типовая	мин.		режим	типовая	мин.	
ЭВ-200									
15 С, Ф, С1, Ф1	9	0,0025	0,1	0,005	54	0,015	0,1	0,03	
25 ΦΡ, ΦΡ1	9	0,0025	0,1	0,005	54	0,015	0,1	0,03	
25 C, Φ, C1, Φ1	18	0,005	0,1	0,01	144 (180)	0,04 (0,05)	0,1 (0,2)	0,08 (0,10)	
32 ФР, ФР1	18	0,005	0,1	0,01	144 (180)	0,04 (0,05)	0,1 (0,2)	0,08 (0,10)	
32 C, Φ, C1, Φ1	36	0,01	0,1	0,02	288 (288)	0,08 (0,08)	0,5 (0,5)	0,16 (0,16)	
40 C, Φ, C1, Φ1	54	0,015	0,1	0,03	360 (432)	0,10 (0,12)	0,5 (0,5)	0,20 (0,24)	
50 ΦΡ, ΦΡ1	36	0,01	0,1	0,02	288 (288)	0,08 (0,08)	0,5 (0,5)	0,16 (0,16)	
50 C, Φ, C1, Φ1	72	0,02	0,1	0,04	576 (648)	0,16 (0,18)	0,5 (0,5)	0,32 (0,36)	
50, 80 СД/80	_	_	_	_	80	0,03	0,1	0,05	
50, 80 СД/160	_	_	-	_	160	0,05	0,1	0,09	
50, 80 СД/400	_	_	-	_	400	0,12	0,3	0,23	

Продолжение таблицы 7.2

прооолжение п		Газообразная среда						
Типоразмер		Цена импульса т, л				Цена импульса m, л		
(исполнение)	Q'наиб,	Част.	Имп. р	·	Q'наиб,	Част.	Имп. ре	
	м ³ /ч	режим	типовая	мин.	- м ³ /ч	режим	типовая	мин.
ЭВ-200								
65 C, Φ, C1, Φ1	126	0,035	0,1	0,07	828 (1080)	0,23 (0,30)	1 (1)	0,46 (0,60)
80 ФР, ФР1	72	0,02	0,1	0,04	576 (648)	0,16 (0,18)	0,5 (0,5)	0,32 (0,36)
80 C, Φ, C1, Φ1	180	0,05	0,5	0,1	1368 (1620)	0,38 (0,45)	1 (2)	0,76 (0,90)
80 СД/800	-	_	-	-	800	0,23	0,5	0,45
80 СД/1600	_	_	_	_	1600	0,45	1	0,89
100 ФР, ФР1	180	0,05	0,5	0,1	1368 (1620)	0,38 (0,45)	1 (2)	0,76 (0,90)
100 C, Φ, C1, Φ1	288	0,08	0,5	0,16	2376 (2520)	0,66 (0,70)	5 (5)	1,32 (1,40)
125 C, Φ, Φ1	432	0,12	0,5	0,24	3240 (3600)	0,90 (1,00)	5 (5)	1,8 (2,0)
150 C, Φ, Φ1	648	0,18	1	0,36	5400 (5400)	1,50 (1,50)	5 (5)	3,0 (3,0)
200 C, Φ, Φ1	1080	0,30	1	0,6	9000 (10080)	2,50 (2,80)	10 (10)	5,0 (5,6)
250 C, Φ, Φ1	1800	0,50	5	1,0	14400 (15120)	4,00 (4,20)	10 (10)	8,0 (8,4)
300 C, Φ, Φ1	2520	0,70	5	1,4	20160 (22320)	5,60 (6,20)	50 (50)	11,2 (12,4)
ЭВ-205 (Датчик Ду 40)	36	0,01	0,1	0,02	216	0,06	1	0,12
ЭВ-200-ППД	1800	0,50	1	1	-	-	-	-

Примечание:

- 1. Цена импульса погружных расходомеров ЭВ-205 рассчитывается согласно *Приложению Е* в **РЭ** на расходомер исходя из фактической площади сечения трубопровода.
- 2. Для частотного режима работы выхода указано эффективное значение цены импульса.
- 3. В скобках указаны параметры для расходомеров с расширенными границами диапазона измерений.

При установке в качестве текущей переменной на импульсном выходе объёма приведенного к Ст.У. или массы необходимо рассчитать максимально возможное значение расхода в См³/ч (стандартных условиях) или т/ч по формуле 7.2 или 7.3. Затем рассчитать минимальную цену импульса *m* подставив максимально возможное значение расхода в См³/ч или т/ч в формулу 7.1.

Объемный расход, приведенный к стандартным условиям, вычисляется электронным блоком по *формуле* **7.2**.

$$Q_{\rm CT} = \frac{Q_{\nu} * \rho_{\rm pa6}}{\rho_{\rm CT}} \tag{7.2}$$

где Q_{ct} – объемный расход при стандартных условиях, м³/ч;

 Q_v – объемный расход при рабочих условиях, м³/ч;

 ρ_{pa6} – плотность при рабочих условиях, кг/м³;

 ρ_{ct} – плотность при стандартных условиях, кг/м³.

Массовый расход вычисляется электронным блоком по формуле 7.3.

$$Q_m = \frac{Q_{v} * \rho_{\text{pa6}}}{1000} \tag{7.3}$$

где Q_m – массовый расход при рабочих условиях, т/ч;

 Q_v – объемный расход при рабочих условиях, м³/ч;

 ρ_{pa6} – плотность при рабочих условиях кг/м³.

В режиме **«Дискретный выход»** выход меняет свое состояние (замкнутое/разомкнутое) при достижении определенного порога мгновенным расходом (режим «реле расхода») или накопленным объёмом/массой (режим «дозатор»).

Алгоритм работы дискретного выхода в режиме дозатора.

- 1) Сбрасываемый сумматор обнуляется, а дискретный выход устанавливает начальное состояние. Это состояние контактов считается нормальным (основным). Расходомер готов к дозированию.
- 2) Внешняя автоматика по изменившемуся состоянию выхода включает клапан или насос. Расходомер подсчитывает количество вещества. Внешняя автоматика (логика) может в этот момент не включать расход, если это не нужно по технологическим соображениям.
- 3) По достижении заданного количества дискретный выход меняет свое состояние. Внешняя автоматика (логика) по изменению состояния выхода выключает расход и, при необходимости, переключает поток или меняет технологическую тару.
- 4) Одновременно с выполнением п.3 запускается счетчик времени таймаута в миллисекундах (от 1 до 65535), указанного в регистре 40011. По окончании таймаута выполняется переход на пункт 1 алгоритма.

Электрические параметры частотно-импульсного выхода приведены в таблице 7.3.

Таблица 7.3 – Электрические параметры частотно-импульсного выхода

Характеристика	Значение
Тип выхода	Открытый коллектор
Необходимость внешнего питания	Пассивный
Режимы работы	Частотный Импульсный Дискретный выход (реле расхода, дозатор)
Максимальная частота	1000 Гц – частотный режим 500 Гц – импульсный режим
Максимальный ток	50 mA

Продолжение таблицы 7.3

Характеристика	Значение
Настраиваемая переменная в частотном режиме работы	Объемный расход Расход при Ст.У. Массовый расход Абсолютное давление измеряемой среды Температура измеряемой среды
Настраиваемая переменная в импульсном режиме работы	Объемный расход Объемный расход в Ст.У Массовый расход
Настраиваемая переменная в дискретном режиме работы	Реле расхода (нормально открытый контакт) Реле расхода (нормально замкнутый контакт) Объемный дозатор (порция в миллилитрах) нормально разомкнутый Массовый дозатор (порция в граммах) нормально разомкнутый Объемный дозатор (порция в миллилитрах) нормально замкнутый Массовый дозатор (порция в граммах) нормально замкнутый
Диапазон напряжений питания, В	2,527

Рекомендуемое сопротивление нагрузочного резистора *Внагр*. для частотного, импульсного или дискретного выхода определяется по формуле 7.2.

$$(U-1)/0,04 < Rharp. < (U-1)/0,005, Om,$$
 (7.2)

где *U* – внешнее напряжение питания, В.

Режимы частотный, импульсный или дискретный выход реализованы на одних и тех же клеммах, поэтому нельзя использовать более одного режима одновременно.

По согласованию с заказчиком (или самим заказчиком через интерфейсы RS-485, USB или с помощью дисплея) частотно-импульсный выход может быть перенастроен на другие режимы и цены импульса согласно *таблицам 7.4 – 7.6*. В таблицах 7.4-7.6 указаны номера регистров протокола Modbus RTU.

Таблица 7.4 – Частотные режимы

Режим (Регистр 40007)	Текущая переменная	Единицы измерения	Минимальное значение (Регистр 40033)	Максимальное значение (Регистр 40035)
0	Объёмный расход	м ³ /ч	0	см. паспорт на расходомер или таблицу 7.2
1	Объёмный расход при Ст.У.	м ³ /ч	0	см. паспорт на
2	Массовый расход	m/ч	0	расходомер
3	Абсолютное давление	МПа	см. паспорт на	
4	Температура	°C	расходомер	

Рабочая частота в частотных режимах не превышает 1200 Гц.

Таблица 7.5 – Импульсные режимы

Режим (Регистр 40007)	Текущая переменная	Единицы измерения
5	Объём	л
6	Объём, приведенный к Ст.У.	л
7	Macca	кг

Значение цены импульса см. в паспорте на расходомер или в регистре 40039.

Рабочая частота в импульсных режимах не превышает 500 Гц

Таблица 7.6 – Дискретные режимы

Режим (Регистр 40007)	Текущая переменная	Единицы порога срабатывания
8	Реле расхода (контакт нормально открытый)*	м ³ /ч
9	Реле расхода (контакт нормально замкнутый)*	м ³ /ч
10	Объёмный дозатор**	МЛ
11	Массовый дозатор**	г

Значение порога срабатывания (размера дозы) см. в паспорте на расходомер.

Рабочая частота в дискретных режимах не превышает 50 Гц

7.4 Аналоговый (токовый) выходной сигнал с цифровым протоколом

HART

Значение силы тока в цепи токового выходного сигнала лежит в пределах 4-20мА и линейно зависит от текущей переменной. Текущей переменной может объявляться: объёмный расход, объёмный расход приведенный к Ст.У., массовый расход, абсолютное давление, температура.

Токовый выход является интерфейсом для передачи данных по цифровому протоколу HART v6. Описание команд и переменных HART приведено в *приложении Г*. Файл описания устройства (DD) и DD-файл для работы с коммуникатором Emerson доступны на официальном сайте компании «ЭМИС» в разделе документация и ПО.

Режимы работы токового выхода могут быть перенастроены через протокол Modbus или с помощью дисплея электронного блока. Значения переменной соответствующие току 4 мА и 20 мА могут быть настроены через протокол HART. Более подробно смотрите в *приложении Г*.

Для расходомеров ЭВ-200 и ЭВ-200-ППД току 20мА по умолчанию соответствует наибольший расход **Qнаиб** для данного типоразмера расходомера согласно *таблицам* 1.3 и 1.4 в РЭ на расходомер.

Для датчика расходомера ЭВ-205 току 20мА соответствует расход 28 м 3 /ч для жидкостей и 210 м 3 /ч для газообразных сред.

Току 4 мА по умолчанию соответствует нулевой расход. По заказу значения 4 и 20 мА могут быть настроены на другие расходы.

Для гарантированной работы токового выхода общее сопротивление цепи токового выхода **R*** должно удовлетворять **соотношению 7.3**.

^{* -} порог устанавливается в регистре 40039

^{** -} величина порции дозатора устанавливается в регистре 40903

$$R^* \le (U\pi - Ui) / 0,024$$
, OM, (7.3)

где *Uп* – напряжение источника питания, В,

Ui = 12 B

При этом для общепромышленного исполнения и для взрывозащищенных исполнений Вн, РВ, РО-РВ напряжение на клеммах токового выхода расходомера должно быть в диапазоне от 12 до 27 В.

Для взрывозащищенных исполнений **ExB, ExiaB, ExiaC, PBИ, PO** напряжение на клеммах токового выхода расходомера должно быть в диапазоне от 12 до 25,3 В.

7.5 Цифровые выходные сигналы

Электронный блок поддерживает передачу данных по цифровым интерфейсам RS-485 и USB.

Для передачи данных по интерфейсу RS-485 используется цифровой протокол Modbus RTU. Поддерживаемые команды, а так же регистры доступные для изменения представлены в приложении В. Для диагностики и настройки расходомера по цифровому интерфейсу рекомендуется применять фирменное программное обеспечение «ЭМИС-Интегратор». По запросу программное обеспечение «ЭМИС-Интегратор» может быть поставлено вместе с расходомером. Также программное обеспечение «ЭМИС-Интегратор» доступно на сайте www.emis-kip.ru.

Интерфейс RS-485 соответствует требованиям стандарта EIA/TIA-485-A. Основные характеристики интерфейса RS-485 представлены в *таблице 7.7.*

Таблица 7.7 – Основные характеристики интерфейса RS-485

Параметр	Значение
Максимальная скорость передачи данных	38,4 кбит/с.
Максимальная длина одного сегмента сети	1200 м
Максимальное количество узлов в сегменте сети	64
Сигнал приёмопередатчиков	дифференциальный

Интерфейс USB соответствует требованиям стандарта USB 2.0. Интерфейс USB используется для технологической настройки прибора на месте эксплуатации. Для подключения необходимо использовать кабель USB Type B Mini. Рекомендуется осуществлять подключение к интерфейсу при выключенном электронном расходомере. Не допускается использование интерфейса USB во взрывоопасных зонах.

Одновременная работа расходомера по интерфейсам RS-485 и USB невозможна. При подключении двух интерфейсов приоритетным является интерфейс USB.

7.6 Имитационный вход

Имитационный вход предназначен для проведения поверки расходомера имитационным методом. Сигнал на имитационном входе имитирует сигнал от чувствительного элемента (сенсора) в проточной части расходомера. Частота имитационного сигнала при этом пропорциональна скорости и объемному расходу рабочей среды. Подробно процедура поверки расходомеров описана в Методике поверки ЭВ-200.000.000.000.00 МП с изменениями №2.

Перед началом процедуры поверки произвести настройку генератора:

- установить нагрузку на выходе генератора HIGH-Z;
- установить амплитуду напряжения на выходе генератора 0,5±0,1 В п-п;
- установить тип выходного напряжения генератора синусоида, постоянное смещение 0;

7.7 Вход для термометра сопротивления

Вход для термометра сопротивления предназначен для подключения преобразователей температуры имеющих выходную характеристику с НСХ Рt100, 100П, 50М по ГОСТ 6651-2009. Подключение преобразователей температуры производится по 4-х проводной схеме. Значение измеряемого сопротивления преобразователей температуры должно находиться в пределах ограничений ГОСТ 6651-2009.

7.8 Аналоговый (токовый) вход

Аналоговый (токовый) вход предназначен для подключения датчика давления с выходным сигналом 4-20мА. К входу можно подключить датчик абсолютного или избыточного давления. Единицы измерения датчика давления (МПа или кгс/см²) можно задать в настройках электронного блока.

8. ЭЛЕКТРИЧЕСКОЕ ПОДКЛЮЧЕНИЕ (ЭЛЕКТРОМОНТАЖ)

8.1 Необходимый инструмент

Перечень инструмента, рекомендованного для электрического монтажа:

- ключ для кабельных вводов;
- стриппер для зачистки проводов;
- клещи обжимные для наконечников проводов (при их использовании)
- отвертка шлицевая ≤3 мм для подключения кабеля к клеммам электронного блока;
- отвертка крестовая РН2 для подключения заземления к корпусу электронного блока;

8.2 Требования к соединительному кабелю

Для подключения электронного блока, рекомендуется использовать многожильный медный кабель с сечением провода от 0.129 мм^2 до 2.08 мм^2 ;

Дополнительные характеристики кабеля (огнестойкость, пониженная горючесть и т.д.) необходимо выбирать в зависимости от внешних условий применения.

Максимальное удаление электронного блока от источника питания зависит от сопротивления кабеля. Максимальное допустимое сопротивление кабеля в зависимости от исполнения электронного блока при напряжении питания 24 В для версии без дисплея составляет 75 Ом, для версии с дисплеем - 20 Ом. При расчете стоит учитывать, что указано сопротивление для всей линии (т.е. плюсового и минусового провода). При использовании внешнего барьера искрозащиты необходимо учитывать его добавочное (проходное) сопротивление.

Расчёт сопротивления кабеля производится по формуле 8.1.

$$R = \rho \cdot \frac{l}{S},\tag{8.1}$$

где, R - сопротивление кабеля, Ом

 ρ – удельное сопротивление кабеля, $Om*mm^2/m$

I – длина кабеля, м

S – площадь поперечного сечения кабеля в mm^2 .

Для подключения цифрового интерфейса RS-485 и аналогового (токового) выхода с цифровым протоколом HART рекомендуется применять витой экранированный кабель, например КИПЭВ, рекомендуемые характеристики кабеля представлены в таблице 8.1.

Таблица 8.1 – Характеристики кабеля для цифровых интерфейсов

Характеристика	Значение
Скрутка	Попарная
Количество пар	1 (при одиночной прокладке)
Наличие экрана	Общий (для многопарных кабелей рекомендуется наличие индивидуального экрана для каждой пары)
Электрическое сопротивление жилы постоянному току при 20°С, не более	10 Ом/100 м
Жилы	Многопроволочные медные
Электрическая екмость пары, не более	42 пФ/м
Коэффициент затухания на частоте 1 МГц при 20°С, не более	2,1 дБ/100м

Характеристики, указанные в таблице 8.1, являются базовыми, при наличии внешних требований (негорючесть, наличие брони и т.д.) их необходимо учитывать при выборе кабеля.

8.3 Подключение электронного блока

При электромонтаже необходимо выполнять следующие рекомендации:

- не допускается располагать линии связи электронного блока с внешними устройствами вблизи силовых кабелей;
- кабели и провода, соединяющие электронный блок и регистрирующие приборы, рекомендуется прокладывать в металлорукавах или металлических трубах;
- для прокладки линии связи при монтаже рекомендуется применять кабели контрольные с резиновой или пластмассовой изоляцией, кабели для сигнализации с полиэтиленовой изоляцией;
- допускается совместная прокладка в одном кабеле проводов цепей питания электронного блока и выходных сигналов;
- рекомендуется вблизи мест прокладки линии связи электроустановок мощностью более 0,5 кВА применение экранированного кабеля с изолирующей оболочкой;
- в качестве сигнальных цепей и цепей питания расходомера могут быть использованы изолированные жилы одного кабеля, при этом сопротивление изоляции должно быть не менее 10 МОм. Экранировка цепей выходного сигнала от цепей питания расходомера не требуется;
- при проведении электромонтажа необходимо прозвонить и замаркировать разделанные концы кабеля, а затем подсоединить их к клеммной колодке расходомера. Визуально проверить правильность подключения соответствующих проводов к расходомеру;
- заземление расходомера производить путем соединения проводом сечением не менее 2,5 мм² шины заземления и специального зажима на корпусе расходомера.

Внешний вид платы интерфейсов для подключения электронного блока показан на рисунке 8.1.

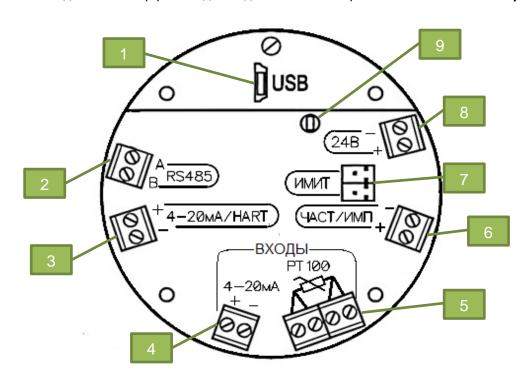


Рисунок 8.1 – Плата интерфейсов электронного блока

Пояснения к рисунку 8.1 приведены в таблице 8.2.

Таблица 8.2 – Пояснения к рисунку 8.1

Nº	Обозначение	Назначение	
1	USB	Цифровой интерфейс USB	
2	RS485	Цифровой интерфейс RS-485	
3	4-20mA/HART	Токовый выход с цифровым протоколом HART	
4	ВХОДЫ 4-20 мА	Вход для датчика давления с выходным сигналом 4-20 мА	
5	ВХОДЫ РТ100	Вход для термометра сопротивления	
6	ЧАСТ/ИМП	Частотно-импульсный выход	
7	ИМИТ	Разъем для подключения имитатора расхода	
8	±24B	Питание прибора	
9	-	- Светодиод, индицирующий текущее состояние электронного блока	

Приборы исполнений ВсТД и ВТД, выпущенные после 1 октября 2024 года, оснащаются дополнительной платой коммутации для подключения датчика давления. Внешний вид платы коммутации для подключения датчика давления показан на рисунке 8.2.

Рисунок 8.2 – Плата коммутации для подключения датчика давления

Электромонтаж электронного блока необходимо производить в соответствии со схемами подключения, приведенными в пункте 8.4.

ВНИМАНИЕ! При монтаже расходомера с дистанционным размещением электронного блока необходимо закрепить кабель, соединяющий проточную часть расходомера и электронный блок. В противном случае вибрация кабеля может приводить к появлению паразитного сигнала сенсора и некорректной работе расходомера.

В исполнении электронного блока с разъемным подключением вместо одного из кабельных вводов установлен соединитель с 10 контактами (вилка). Распиновка разъема для исполнения с токовым выходом и без токового выхода приведена на рисунке 8.3.

	/ 1
Цепь	Конт
Питание U-	1
Питание U+	2
RS-485 A	3
RS-485 B	4
	5
	6
Токовый выход I-	7
Токовый выход I+	8
Част./имп. выход F-	9
Част./имп. выход F+	10

а) исполнение	с разъемом
и токовым	выходом

Цепь	Конт
Питание U-	1
Питание U+	2
	3
	4
	5
	6
RS-485 A	7
RS-485 B	8
Част./имп. выход F-	9
Част./имп. выход F+	10

XP1

б) исполнение с разъемом без токового выхода

Рисунок 8.3 – Распиновка разъема для исполнения с разъемом

Ответная розетка типа 2РМ22КПН10Г1В1 может поставляться в комплекте по спец. заказу. По спец. заказу также возможно применение соединителя с 4 контактами.

8.4 Схемы электрического подключения

В данном разделе приведены типовые схемы подключения электронного блока к вторичному оборудованию и источникам питания.

Внешний вид платы интерфейсов для подключения электронного блока показан на *рисунке 8.1.* Дальнейшие изображения схем упрощены для наглядности.

На *рисунке 8.4* представлена схема подключения питания электронного блока. На схеме указано номинальное значение напряжения. Требования по электропитанию приведены в п. 7.1. Источник питания на схеме используется для питания расходомера в целом (логика, дисплей, цифровой выход ModBUS и т.д.) и является обязательным.

На *рисунке* **8.5** представлена схема подключения частотно-импульсного или дискретного выхода электронного блока к вторичным преобразователям с активным (слева) и пассивным (справа) входами. Параметры частотно-импульсного выхода приведены в п.7.3.

Источники питания частотно-импульсного и токового выхода 4-20 мА (HART) могут отсутствовать (если не используются соответствующие выходы) или быть совмещены с основным источником питания (если не требуется гальваническая развязка между выходами).

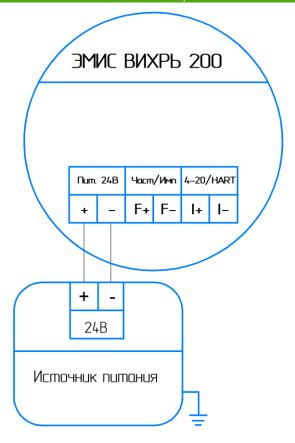


Рисунок 8.4 - Схема подключения питания электронного блока

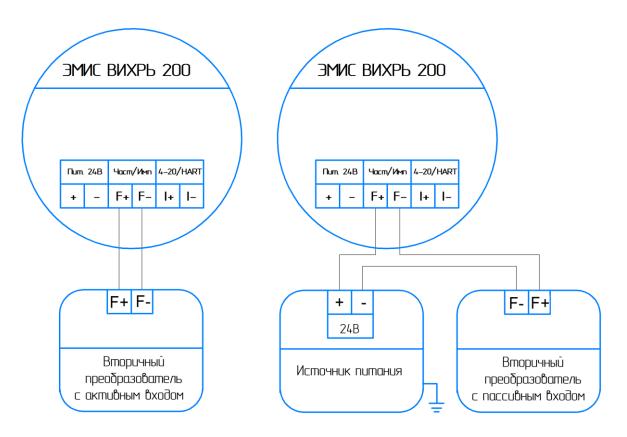


Рисунок 8.5 - Схема подключения частотно-импульсного или дискретного выхода электронного блока к вторичному преобразователю с активным (слева) и пассивным (справа) частотным входом

На *рисунке 8.6* представлена схема подключения токового выхода 4-20 мА электронного блока к вторичным преобразователям с активным (слева) и пассивным (справа) токовыми входами. Параметры токового выхода 4-20 мА приведены в п.7.4.

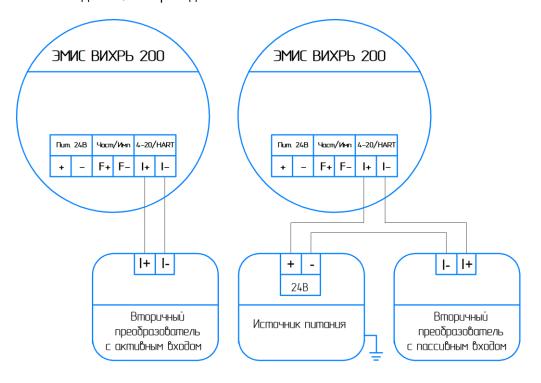


Рисунок 8.6 - Схема подключения токового выхода 4-20 мА электронного блока к вторичному преобразователю с активным (слева) и пассивным (справа) токовым входом

На *рисунке* **8.7** представлена схема подключения электронного блока к HART-мастеру с активным (слева) и пассивным (справа) входами для работы по протоколу HART.

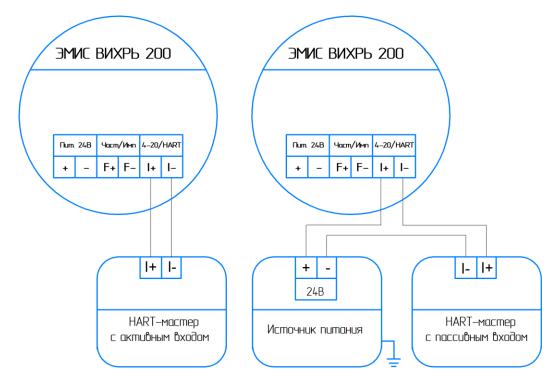


Рисунок 8.7 - Схема подключения электронного блока к HART-мастеру с активным (слева) и пассивным (справа) входом цифрового протокола HART

На рисунке 8.8 представлены две схемы подключения HART-коммуникатора или HART-модема к электронному блоку для работы по протоколу HART. HART-коммуникатор или HART-модем может подключаться к нагрузочному резистору или непосредственно к клеммам электронного блока. Если в HART-коммуникаторе или HART-модеме имеется встроенный резистор HART, то необходимо использовать схему слева, резистор R* при этом устанавливать не нужно.

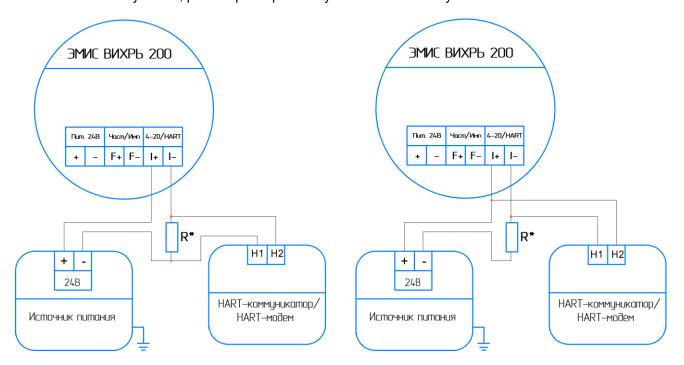


Рисунок 8.8 - Схема подключения НАКТ-коммуникатора или НАКТ-модема к электронному блоку для работы по протоколу HART

Сопротивление резистора R* в цепи токового выхода определяется в соответствии с требованиями п. 7.4

На рисунке 8.9 представлена схема подключения электронного блока к вторичному оборудованию по интерфейсу RS485. Параметры интерфейса RS485 приведены в п.7.5.

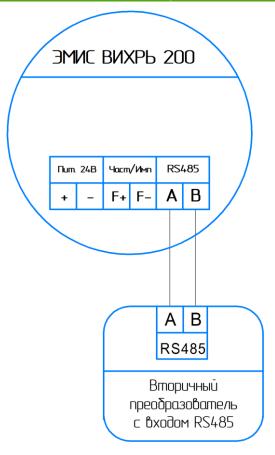


Рисунок 8.9 - Схема подключения электронного блока к вторичному оборудованию по интерфейсу RS485

На *рисунке 8.10* представлена схема подключения термометра сопротивления к электронному блоку. Параметры термометров сопротивления приведены в п.7.7.

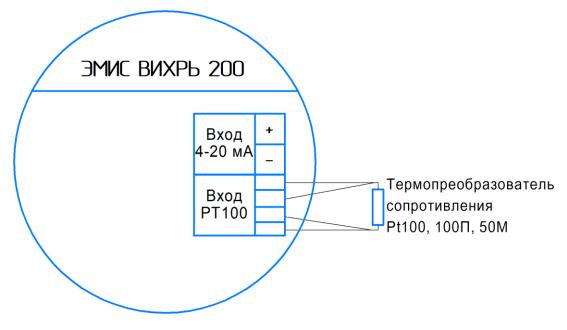


Рисунок 8.10 - Схема подключения термометра сопротивления к электронному блоку

На *рисунке 8.11* представлена схема подключения датчика давления к электронному блоку. Внутреннее сопротивление входа не более 150 Ом. Параметры датчиков давления приведены в п.7.8.

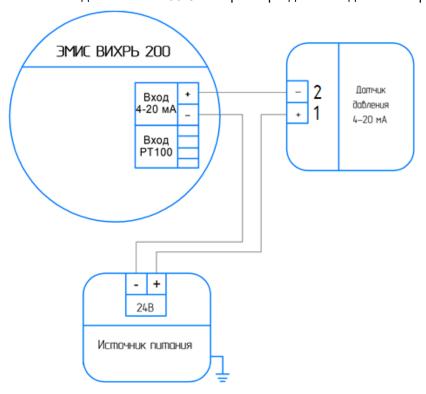


Рисунок 8.11 - Схема подключения датчика давления к электронному блоку

На *рисунке 8.12* представлена схема подключения датчика давления к электронному блоку с помощью дополнительной платы коммутации. Плата коммутации крепится к плате интерфейсов.

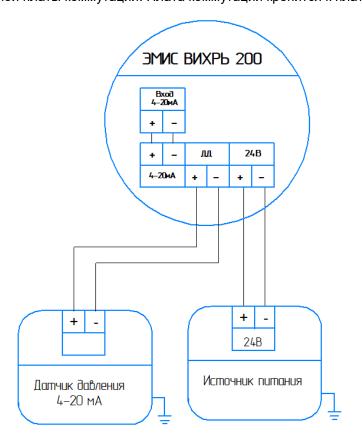


Рисунок 8.12 - Схема подключения датчика давления с помощью дополнительной платы коммутации

На *рисунке 8.13* представлено расположение зажимов клеммных колодок для взрывозащищенных исполнений РВ, РВИ, РО с рудничной взрывозащитой.

Коробка клеммная взрывозащищенная Проточная часть расходомера

Цепь Конт Цепь

Сигнал сенсора 1 1 Сигнал сенсора

 Цень
 КИНП
 Цень

 Сигнал сенсора
 1
 1
 Сигнал сенсора

 Общий
 2
 2
 Общий

 + 3 B
 3
 3
 + 3 B

Питание U-4 Питание U+ 5 Част./имп. выход F-6 Част./имп. выход F+ 7 8 Вход ДД Р-Вход ДД Р+ 9 Токовый выход I-10 Токовый выход І+ 11 RS-485 B 12 13 RS-485 A 14 Вход ДТ Т1 Вход ДТ Т2 15 Вход ДТ ТЗ 16

Вход ДТ Т4

Проточная часть расходомера 17

Коробка клеммная вэрывозащищенная

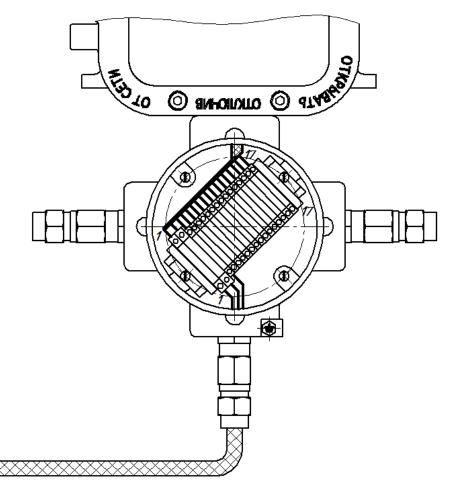


Рисунок 8.13 - Расположение зажимов клеммных колодок для взрывозащищенных исполнений PB, PBИ, PO с рудничной взрывозащитой

На *рисунке 8.14* представлена схема подключения расходомеров взрывозащищенных исполнений ExB, ExC, ExiaB, ExiaC, PBИ, PO с использованием барьеров искрозащиты.

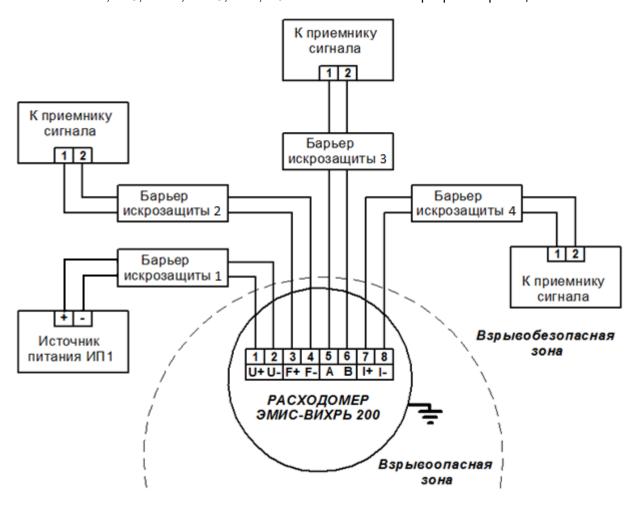


Рисунок 8.14 – Схема подключения расходомеров взрывозащищенных исполнений ExB, ExC, ExiaB, ExiaC, PBИ, PO с использованием барьеров искрозащиты

Примечания:

- барьер искрозащиты 1 (цепи питания) для модификаций ExB, ExiaB допускается использовать БИБ-02Р-22, для модификаций ExC, ExiaC блок питания BXNE37000E (является одновременно источником питания ИП1 и барьером искрозащиты 1)
 - барьер искрозащиты 2 (цепи частотного сигнала) ЭнИ-БИС-108-Ех
 - барьер искрозащиты 3 (цепи цифрового сигнала RS485) БИБ-02(D)-7
- барьер искрозащиты 4 (цепи токового выхода 4-20 мА) ЭнИ-БИС-301-Ex-Al-1к-420, (необходим 1 канал блока питания ЭМИС-БРИЗ-90 2к-250).

На *рисунке 8.15* представлено расположение зажимов клеммных колодок для взрывозащищенных исполнений РО-РВ с рудничной взрывозащитой.

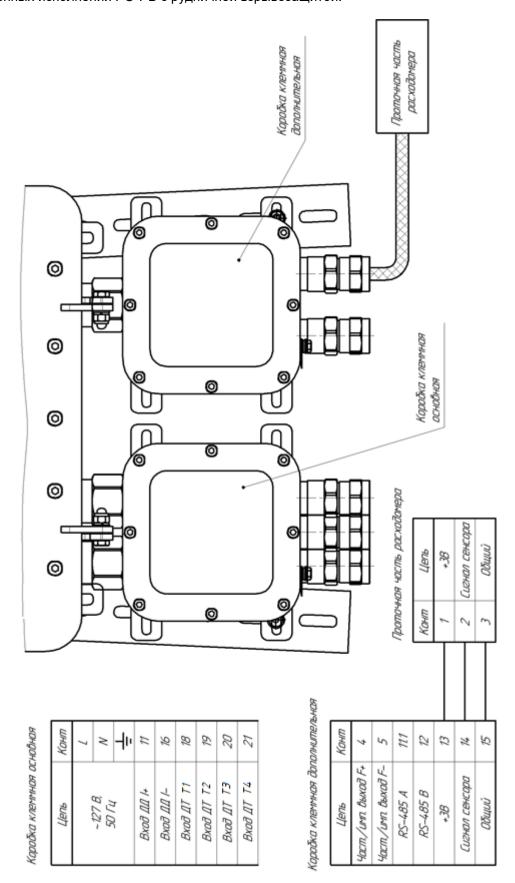


Рисунок 8.15 – Расположение зажимов клеммных колодок для взрывозащищенных исполнений РО-РВ с рудничной взрывозащитой

9. ЭКСПЛУАТАЦИЯ

9.1 Ввод в эксплуатацию

Перед первым включением электрического питания расходомера и пуском его в эксплуатацию необходимо:

- проверить правильность монтажа расходомера на трубопроводе;
- проверить параметры электрического питания расходомера;
- проверить правильность заземления корпуса расходомера;
- проверить правильность подключения внешних устройств.

Параметры расходомера, указанные в паспорте на прибор:

- условный диаметр расходомера;
- диапазон измерения расхода;
- серийный номер;
- сетевой адрес расходомера в сети Modbus или HART;
- вид взрывозащиты;
- значение степени демпфирования показаний объёмного расхода выбирается из ряда целых чисел от 0 до 10 (по умолчанию установлено 4);
 - измеряемая среда: жидкость, газ, пар;
 - температурный диапазон измеряемой и окружающей среды;
 - класс точности расходомера;
- параметры выходных сигналов: значение расхода для 1000 Гц для частотного сигнала, цена импульса для импульсного сигнала, значение расхода для 20 мА для токового сигнала;
 - К-фактор (для погружных расходомеров указывается К-фактор для датчика расхода);
 - версия ПО электронного блока

Ввод в эксплуатацию расходомера оформляется актом.

При вводе расходомера в эксплуатацию в паспорте необходимо сделать отметку с указанием даты ввода и заверить её подписью лица, ответственного за эксплуатацию приборов.

9.2 Система уровней доступа

Для защиты параметров электронного блока несанкционированного изменения реализована система уровней доступа. Уровни доступа определяют возможность модификации регистров флагов (coils) и регистров хранения (holding registers) протокола Modbus. Описание протокола Modbus приведено в приложении В.

Уровни доступа регистров кодируются следующим образом:

- уровень 0 свободная модификация пользователем;
- уровень 1 возможность модификации после ввода стандартного пароля
- уровень 2 возможность модификации после ввода пароля уровня 2
- уровень 3 модификация только при включении переключателя SW1:1 на процессорной плате.

Уровень доступа 0 – минимальный уровень доступа, уровень 3 – максимальный. Более высокий уровень доступа позволяет модифицировать регистры, имеющие более низкий уровня доступа.

Стандартный пароль является единым и неизменяемым для всех электронных блоков. Стандартный пароль - 1111. Пароль уровня 2 является единым для всех электронных блоков. Пароль уровня 2 - 2.

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ЭЛЕКТРОННОГО БЛОКА (РАСШИРЕННАЯ ВЕРСИЯ «В», ВЕРСИЯ С ВЫЧИСЛИТЕЛЕМ «ВВ»)

Доступ по стандартному паролю действует в течение 15 минут, по истечении 15 минут устанавливается уровень доступа 0. Доступ по паролю уровня 2 действует N минут, по истечении N минут устанавливается уровень доступа 0 (период действия пароля уровня 2 устанавливается в регистре 41010).

9.3 Управление с дисплея

Электронные блоки поставляются с дисплеями двух видов:

- индикатор с механической клавиатурой исполнение «СИМ»,
- индикатор с оптической клавиатурой исполнение «СИО».

Индикатор с оптической клавиатурой сигнализирует о «нажатии» на кнопки с помощью символа точка «.» в левой верхней части экрана.

В индикаторе с оптической клавиатурой реализованы функции ручной блокировки кнопок и автоматической блокировки кнопок.

Для ручной блокировки кнопок необходимо в основном меню ввести комбинацию кнопок «выбор • вниз • выбор • вниз • в

Включение режима автоматической блокировки кнопок производится через меню настроек пункты меню 28-29 (*см. таблицу 9.1, рисунок 9.4*). Если автоматическая блокировка кнопок включена, то при отсутствии нажатий на кнопки в течение 15 минут дисплей переходит режим блокировки. В режиме блокировки символ «В» начинает гореть постоянно, и дисплей переходит в основное меню.

При включенной автоматической блокировке кнопок после включения/перезагрузки электронного блока дисплей переходит в режим блокировки.

В режиме блокировки дисплей не переходит по пунктам меню. Для выхода из режима блокировки необходимо ввести комбинацию кнопок «выбор • вниз • выбор • вниз • выбор • вниз • вниз

ЖК-дисплей расходомеров взрывозащищенных исполнений **ExB, ExiaB, ExiaC** работает при температуре не ниже минус 40 °C. При температурах ниже минус 40 °C индикация на дисплее прекращается, но после увеличения температуры выше минус 40 °C индикация на дисплее возвращается.

ЖК-дисплей расходомеров взрывозащищенных исполнений **РВИ**, **РО**, **РО-РВ** работает во всем температурном диапазоне работы расходомера.

ЖК-дисплей расходомеров взрывозащищенных исполнений **Вн** и **РВ**, а также общепромышленного исполнения за счет встроенного в дисплей подогрева работает во всем температурном диапазоне работы расходомера.

Индикатор отображает следующую информацию:

- объёмный расход, накопленный объём и обнуляемый объём для рабочих условий;
- объёмный расход, накопленный объём и обнуляемый объём, приведенный к стандартным условиям. При этом на дисплее единицы измерения **м³** и **м³/ч** мигают;

- для расходомеров ЭВ-205 объёмный расход через датчик расхода Ду40 и фактический расход через весь трубопровод. При отображении фактического расхода на дисплее единицы измерения $\mathbf{\textit{m}}^3$ и **м³/ч** мигают;
 - массовый расход, накопленная масса и обнуляемая масса;
 - температура электроники и измеряемой среды;
 - давление измеряемой среды;
 - процентное значение мгновенного расхода от максимального расхода;
 - значение сигналов на токовом и частотно-импульсном выходах;
 - контрольные суммы программы и метрологических данных;
 - текущий уровень доступа;
 - диагностические сообщения.

При отображении обнуляемых счетчиков на дисплее загорается сегмент «D».

Описание меню индикатора приведено в *таблице 9.1*.

Таблица 9.1 - Описание меню индикатора

Пункт меню	Формат индикации	Кнопки перехода	Описание меню
1	Объёмный расход, м ³ /ч Накопленный объём, м ³		Меню текущего и накопленного объёмного расхода
2	(значение в верхней строке) Накопл. объём в Ст.У, м ³	₩1	Значение накопленного объёма, приведенного к стандартным условиям
3	(значение в верхней строке) Накопленная масса, т	1 2	Значение накопленной массы
4	(значение в верхней строке) Значение тока в токовой петле, мА	₩3	Значение силы тока в токовой петле
5	(значение в верхней строке) Знач. частоты на дискр. выходе, Гц	1 4	Значение частоты на дискретном выходе
6	(значение в верхней строке) Контр. сумма прогр. кода, контр. сумма метролог. данных в 16-ом формате	1 5	Контрольная сумма программы в шестнадцатеричном формате, знак "минус" и контрольная сумма метрологически значимых данных в том же формате
7	(значение в верхней строке) Диагностич. регистр в 16-ом формате	1 6	Содержимое диагностического регистра в шестнадцатеричном формате
8*	(значение в верхней строке) Обнуляемый накопл. объём, м ³	▼ 7	Значение обнуляемого накопленного объёма
9*	(значение в верхней строке) Обнуляемый накопл. объём в Ст.У, м ³	₩8	Значение обнуляемого накопленного объёма, приведенного к стандартным условиям
10*	(значение в верхней строке) Обнуляемая накопленная масса, т	1 9	Значение обнуляемой накопленной массы
11	Об. расход в Ст.У, м ³ /ч (значение в нижней строке)	1	Текущее значение объёмного расхода, приведенного к стандартным условиям

Продолжение таблицы 9.1

Пункт	Формат индикации	Кнопки	Описание меню	
меню	Форман иноакадаа	перехода	Chacanae memo	
12	Массовый расход, т/ч	A 2	Текущее значение массового расхода	
	(значение в нижней строке)			
13	Темп. измер. среды, °С	A 3	Температура измеряемой среды	
	(значение в нижней строке)			
14	Темп. электр. блока, °С	A 4	Температура плат блока электроники	
	(значение в нижней строке)			
15	Давление изм. среды, МПа	A 5	Давление измеряемой среды	
4.0	(значение в нижней строке)	(A)		
16	Отношение объёмного расхода к номинальному диапазону	A 6	Процентное отношение значения объёмного расхода к номинальному	
	измерения		(паспортному) диапазону измерения	
	(значение в нижней строке)			
17	Диагностич. регистр в 16-ом	A 7	Содержимое диагностического	
	формате		регистра в шестнадцатеричном	
	(значение в нижней строке)		формате	
18	Текущий уровень доступа	1	Меню уровня доступа	
19	Ввод пароля	■1●1	Меню ввода пароля	
20	Следующий разряд	1 2	Меню выбора разряда пароля	
21	Изменение разряда	■1●1 ▼ ♣1	Меню изменения разряда пароля	
22	Самодиагностика	= 2	Меню самодиагностики	
23	Запуск самодиагностики	2 2 1	Запуск самодиагностики	
24	Просмотр регистров	■3	Меню регистров	
25	Переключение регистров	3 1	Меню просмотра регистров	
26	Изменение регистров	- 4	Меню изменения регистров	
27	Выбор регистра	41	Меню выбора регистров	
28	Выбор разряда	■4♥♣1●1	Меню выбора разряда регистров	
29	Следующий разряд	412	Меню выбора разряда регистров	
30	Изменение разряда	■4 ▼ ♣1●1 ▼ ♣1	Меню изменения разряда регистров	
31*	Автоматическая блокировка кнопок	■5	Меню включения автоматической блокировки кнопок	
32*	Включение/отключение автоматической блокировки кнопок	■ 5 ♥♣ 1 ● 1	Включение/отключение автоматической блокировки кнопок	
* - только	* - только для исполнения «СИО»			

Внешний вид лицевой панели для исполнений «СИМ» и «СИО» показан на рисунке 9.1.

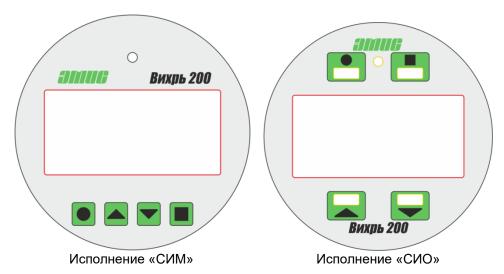


Рисунок 9.1 – Внешний вид лицевой панели для исполнений «СИМ» и «СИО»

Структура выбора параметра нижней строки основного меню показана на рисунке 9.2.

Рисунок 9.2 – Структура выбора параметра нижней строки основного меню Примечание – пункты меню 8, 9, 10 только для исполнения «СИО»

Структура выбора параметра верхней строки основного меню показана на рисунке 9.3.

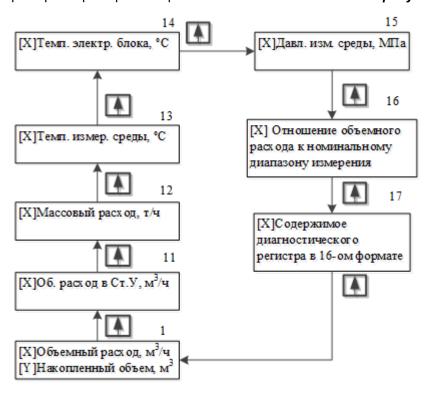
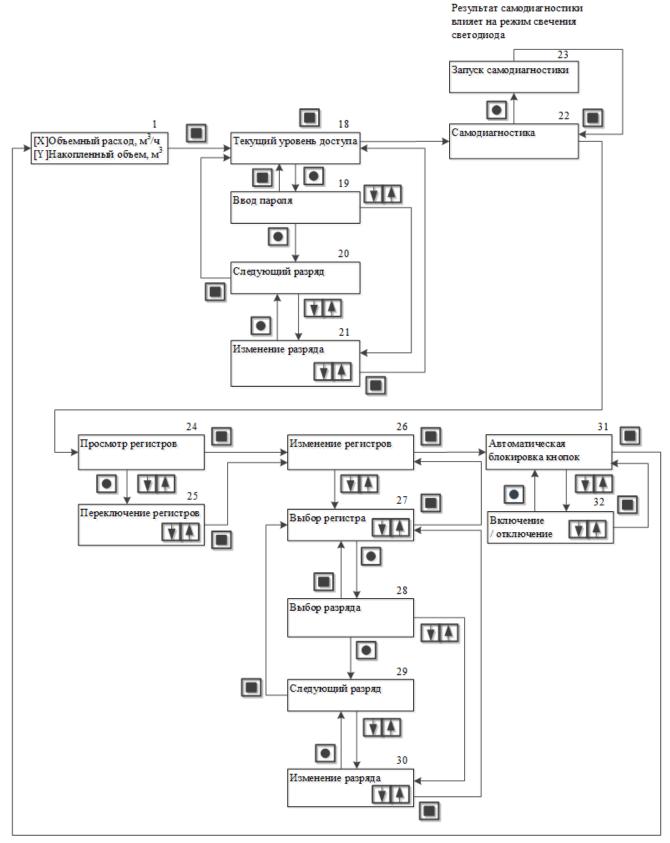



Рисунок 9.3 – Структура выбора параметра верхней строки основного меню Структура меню настроек показана на рисунке 9.4.

Примечание - пункты меню 31, 32 только для исполнения «СИО»

Рисунок 9.4 - Структура меню настроек

9.4 Работа с расходомером через интерфейсы RS-485/USB

Цифровые интерфейсы RS-485 и USB позволяют производить настройку и опрос электронного блока с помощью ПК по протоколу обмена Modbus RTU. Интерфейс RS-485 позволяет объединять несколько электронных блоков в сеть или подключать электронные блоки к уже имеющейся сети с интерфейсом RS-485.

Одновременная работа расходомера по интерфейсам RS-485 и USB невозможна. При подключении двух интерфейсов приоритетным является интерфейс USB.

Для диагностики и настройки расходомера по цифровому интерфейсу рекомендуется применять фирменное программное обеспечение «ЭМИС-Интегратор». Программное обеспечение «ЭМИС-Интегратор» доступно на сайте www.emis-kip.ru.

При общей длине цифровой линии, превышающей 100 метров, на обоих её концах рекомендуется включать согласующие сопротивления номиналом 120 Ом.

Настройки параметров связи по умолчанию приведены в таблице 9.2.

Таблица 9.2 – Настройки параметров связи по умолчанию

Параметр	Значение
Адрес устройства в сети Modbus	1
Скорость обмена бит/с	38400
Количество бит данных	8
Количество стоповых бит	1
Контроль четности	без контроля

Описание протокола Modbus приведено в *приложении В*.

9.5 Настройка электронного блока с вычислителем «ВВ»

Электронный блок версии с вычислителем «ВВ» позволяет вычислять массовый расход насыщенного и перегретого пара, объёмный расход, приведенный к стандартным условиям, для природного газа, попутного нефтяного газа, воздуха и др. газов.

Для реализации функции необходимо подключить датчики давления и/или температуры в соответствии со схемой подключения в **п.8.4**. Кабели от датчиков температуры и давления рекомендуется подключать к стандартному электронному блоку расходомера (с двумя кабельными вводами) через коробку распределительную типа KP-B-100D или непосредственно к электронному блоку исполнения «У» (с четырьмя кабельными вводами).

При отсутствии датчиков для расчетов необходимо задавать значения температуры и давления при рабочих условиях вручную с помощью программы «ЭМИС-Интегратор».

Массовый расход вычисляется электронным блоком по формуле 9.1.

$$Q_m = \frac{Q_{v} * \rho_{\text{pa6}}}{1000} \tag{9.1}$$

где Q_m – массовый расход при рабочих условиях, т/ч;

 Q_v – объемный расход при рабочих условиях, м³/ч;

 ρ_{pa6} – плотность при рабочих условиях кг/м³.

Объемный расход, приведенный к стандартным условиям, вычисляется электронным блоком по *формуле* 9.2.

$$Q_{\rm CT} = \frac{Q_{\nu} * \rho_{\rm pa6}}{\rho_{\rm CT}} \tag{9.2}$$

где Q_{ct} – объемный расход при стандартных условиях, м³/ч;

 Q_v – объемный расход при рабочих условиях, м³/ч;

 ρ_{pa6} – плотность при рабочих условиях, кг/м³;

 ρ_{ct} – плотность при стандартных условиях, кг/м³.

Вычисление плотности воды, насыщенного и перегретого водяного пара производится по методике ГСССД МР 147-2008, природного газа - по ГОСТ Р 8.662 или ГОСТ 30319 (2,3)-2015, воздуха – по ГСССД 8-79, нефтяного газа – по ГСССД МР 113-03, азота, ацетилена, кислорода, диоксида углерода, аммиака, аргона, водорода по ГСССД МР 134-2007 (параметры алгоритмов приведены в **таблице 9.2**).

Таблица 9.2 – Параметры алгоритмов расчета природного газа, воздуха, нефтяного газа, воды и пара

Измеряемая среда	Нормативный документ	Давление (абс), МПа	Температура, С	Дополнительные ограничения
Вода		от 0,1 до 25	от 0 до 450	-
Насыщенный пар	ГСССД MP 147- 2008	от 0,1 до 21,5	от 100 до 371,85	Степень сухости от 0,8 до 1
Перегретый пар		0,1 до 25	от 100 до 450	-
Влажный нефтяной газ	ГСССД МР 113-03	от 0,1 до 15	от -10 до 227	Сумма компонентов от 97,98 до 100 %
	FOCT P 8.662-2009	от 0,1 до 30	от -23,15 до 76,85	Сумма компонентов от 99,95 до 100,05 %
Природный газ	FOCT 30319.2-2015	от 0,1 до 7,5	от -23,15 до 76,85	Плотность от 0,66 до 1,05 кг/м3
	FOCT 30319.3-2015	от 0,1 до 30	от -23,15 до 76,85	Сумма компонентов от 99,85 до 100,15 %
Воздух	ГСССД 8-79	от 0,1 до 15	от -60 до 450	-
Азот, ацетилен, кислород, аммиак, аргон, водород	ГСССД MP 134- 2007	от 0,1 до 10	от -73,15 до 151,85	-
Диоксид углерода	ГСССД MP 134- 2007	от 0,1 до 10	от -53,15 до 151,85	-

Вычисление плотности других жидкостей, кроме воды, производится по соответствующим таблицам «температура-плотность» методом линейной интерполяции. Для таких сред при настройке необходимо ввести несколько пар значений температура-плотность. Для температур, находящихся за пределами табличных значений, применяются соответствующие крайние табличные значения плотности.

Вычисление плотности для измеряемой среды «газообразная среда» производится в соответствии с формулой 9.3.

$$\rho = (\rho_0 * Pa * T_0) / (Kc * Ta * P_0), \tag{9.3}$$

где ρ_0 - плотность измеряемой среды при стандартных условиях, вводится при настройке;

Ра - абсолютное давление измеряемой среды, МПа;

Та - абсолютная температура измеряемой среды, К;

Р₀ - абсолютное давление, соответствующее стандартным условиям, МПа;

 T_0 - абсолютная температура, соответствующая стандартным условиям, K;

Ксж - коэффициент сжимаемости в рабочих условиях, вводится при настройке.

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ЭЛЕКТРОННОГО БЛОКА (РАСШИРЕННАЯ ВЕРСИЯ «В», ВЕРСИЯ С ВЫЧИСЛИТЕЛЕМ «ВВ»)

При неправильной настройке вычислителя или выходе параметров вычислителя за допустимые пределы в регистре Modbus 30001 устанавливается бит 14 «Ошибка вычислителя». Подробная диагностическая информация вычислителя содержится в регистре Modbus 30098. В *таблице 9.3* представлено побитное описание диагностического регистра вычислителя. Установленный в единицу бит означает активность события.

Таблица 9.3 – Диагностический регистр вычислителя

Номер бита	Описание
0	Молярная доля азота не соответствует требуемым значениям
1	Молярная доля диоксида углерода не соответствует требуемым значениям
2	Молярная доля метана не соответствует требуемым значениям
3	Молярная доля этана не соответствует требуемым значениям
4	Молярная доля пропана не соответствует требуемым значениям
5	Молярная доля н-бутана не соответствует требуемым значениям
6	Молярная доля изобутана не соответствует требуемым значениям
7	Молярная доля н-пентана не соответствует требуемым значениям
8	Молярная доля изопентана не соответствует требуемым значениям
9	Молярная доля гексана не соответствует требуемым значениям
10	Молярная доля гептана не соответствует требуемым значениям
11	Молярная доля октана не соответствует требуемым значениям
12	Молярная доля нонана не соответствует требуемым значениям
13	Молярная доля декана не соответствует требуемым значениям
14	Молярная доля водорода не соответствует требуемым значениям
15	Молярная доля кислорода не соответствует требуемым значениям
16	Молярная доля монооксида углерода не соответствует требуемым значениям
17	Молярная доля воды/водяного пара не соответствует требуемым значениям
18	Молярная доля сероводорода не соответствует требуемым значениям
19	Молярная доля гелия не соответствует требуемым значениям
20	Молярная доля аргона не соответствует требуемым значениям
21	Сумма молярных долей компонентов не соответствует требуемому значению
22	Выход температуры за пределы допускаемых значений
23	Выход давления за пределы допускаемых значений
24	Нерасчетная точка для ацетилена и диоксида углерода

9.6 Настройка параметров технологического процесса

При выпуске прибор настраивается на параметры технологического процесса согласно опросному листу. Если какие-либо из требуемых параметров отсутствуют в опросном листе, то по умолчанию устанавливаются следующие значения:

- для расходомеров на жидкость:
- вид измеряемой среды вода;
- статическая характеристика датчика температуры 100П;
- подключен датчик абсолютного давления в МПа;
- верхний предел датчика давления 2,5 МПа;
- атмосферное давление 0,101325 МПа;
- заданное давление (при отсутствии или неисправности датчика давления) 0,101325 МПа;
- заданная температура (при отсутствии или неисправности датчика температуры):
 - для температурного исполнения «85» и «100» +25°С;
 - для температурного исполнения «135» +100°С;
 - для температурного исполнения «200» и «250» +125°С;
 - для расходомеров на газовые среды:
- вид измеряемой среды воздух;
- статическая характеристика датчика температуры 100П;
- подключен датчик абсолютного давления в МПа;
- верхний предел датчика давления 2,5 МПа;
- коэффициент сжимаемости равен 1;
- атмосферное давление 0,101325 МПа;
- температура, соответствующая стандартным условиям 20 °C;
- заданное давление (при отсутствии или неисправности датчика давления) 0,101325 МПа;
- заданная температура (при отсутствии или неисправности датчика температуры):
 - для температурного исполнения «85» и «100» +25°С;
 - для температурного исполнения «135» +100°С;
 - для температурного исполнения «200» и «250» +125°С;
 - для температурного исполнения «300» и «320» +275°С;
 - для расходомеров на пар:
- вид измеряемой среды перегретый водяной пар;
- статическая характеристика датчика температуры 100П;
- подключен датчик абсолютного давления в МПа;
- верхний предел датчика давления 2,5 МПа;
- атмосферное давление 0,101325 МПа;
- заданное давление (при отсутствии или неисправности датчика давления) 0,101325 МПа;
- заданная температура (при отсутствии или неисправности датчика температуры):
 - для температурного исполнения «200» и «250» +125°С;
 - для температурного исполнения «300» и «320» +275°С;
 - для температурного исполнения «350» +300°С;
 - для температурного исполнения «450» +425°C.

Если параметры технологического процесса отличаются от указанных выше значений по умолчанию, то необходимо с помощью программы «ЭМИС-Интегратор» указать типы используемых датчиков давления и температуры, ввести значения давления и температуры измеряемой среды для случая отсутствия или неисправности датчиков, а также провести настройку других параметров.

Рекомендуется при заказе расходомера заполнять опросный лист с указанными параметрами технологического процесса для настройки вычислителя на предприятии-изготовителе.

9.7 Фильтрация входного сигнала

Устройство вихревого расходомера описано в главе 3 данного руководства. Принцип измерения вихревого расходомера основан на следующем эффекте: если в поток измеряемой среды ввести плохообтекаемый предмет (тело обтекания), то за ним формируется след, состоящий из цепочки регулярных вихрей (дорожки Кармана). Вихри представляют собой зоны более высокого и низкого давления, а сенсор расходомера преобразует энергию регулярных вихрей в выходной электрический сигнал. Частота следования вихрей, а, следовательно, и частота сигнала сенсора пропорциональна объемному расходу в широком диапазоне скоростей и зависит от параметров измеряемой среды, геометрических параметров трубопровода и формы тела обтекания.

Электронный блок производит разложение сигнала сенсора в спектр. Частота полезного сигнала соответствует пику наивысшей гармоники спектра (см. *рисунок 9.5*). Значение расхода пропорционально этой частоте. Поэтому для избавления от посторонних гармоник в составе спектра сигнала возможно применение фильтрации.

Рисунок 9.5 - Спектр сигнала

Чем выше значение расхода и соответствующее ему значение частоты сигнала, тем больше минимальная амплитуда полезного сигнала (см. *рисунок 9.6*). Это свойство необходимо учитывать при настройке фильтров.

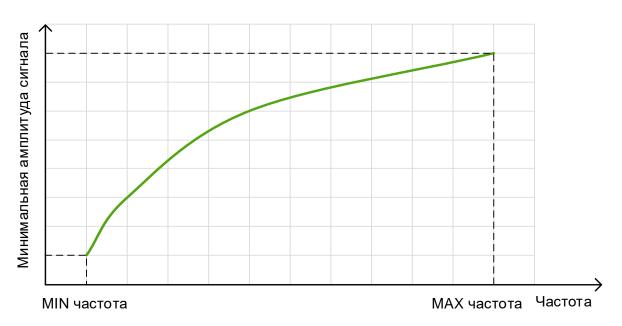


Рисунок 9.6 – Зависимость минимальной амплитуда полезного сигнала от частоты

Электронный блок вихревого расходомера поддерживает несколько типов фильтров:

- 4 заграждающих фильтра;
- заградительный фильтр на 50 Гц;
- фильтр по амплитуде;
- фильтр по минимальному расходу;
- степень демпфирования расхода;
- медианный фильтр;

Все фильтры настраиваются при выпуске прибора, таким образом, чтобы обеспечить работоспособность прибора при минимальных значениях давления. В большинстве случаев этого достаточно, чтобы без настройки эксплуатировать прибор. Однако при воздействии внешних факторов может потребоваться дополнительная настройка на месте эксплуатации.

Заграждающие фильтры предназначены для изменения амплитуды сигнала в определенной полосе частот (см. *рисунок 9.7*). Каждый заграждающий фильтр задается тремя параметрами:

- нижняя граница частоты, Гц;
- верхняя граница частоты, Гц;
- масштабный коэффициент амплитуды, %.

Включение заграждающих фильтров производится битами 1-4 регистра Modbus 40013. Значения граничных частот и масштабных коэффициентов задаются в регистрах Modbus 40075-40098 (см. *приложение В*). Если масштабный коэффициент равен 100%, спектр сигнала не изменяется. В противном случае все гармоники, попадающие в диапазон от нижней граничной частоты до верхней граничной частоты, умножаются на масштабный коэффициент (в случае если фильтр включен). Если частотные диапазоны нескольких фильтров перекрываются, умножение сигнала в перекрывающейся части диапазона происходит на каждый масштабный коэффициент.

Заграждающие фильтры могут помочь в борьбе с самоходом, когда полезного сигнала нет. Однако при неправильной настройке фильтра прибор может перестать работать в диапазоне действия фильтров. Необходимо обязательно проверить работоспособность прибора в указанном диапазоне.

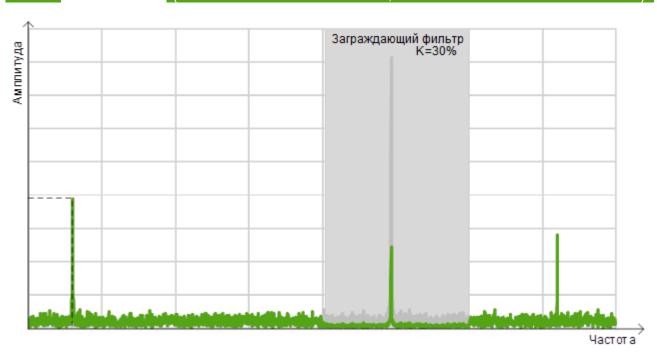


Рисунок 9.7 – Заграждающий фильтр

Заградительный фильтр на 50 Гц представляет собой полосовой фильтр, который производит умножение спектральной составляющей, соответствующей 50 Гц, на коэффициент 0,2, а также двух соседних составляющих спектра на коэффициент 0,4. Данный заградительный фильтр предназначен для фильтрации сетевой помехи с частотой 50 Гц. Включение заградительного фильтра на 50 Гц производится битом 0 регистра Modbus 40013.

Фильтр по амплитуде является защитой от шума (см. *рисунок 9.8*). Уровень сигнала зависит от параметров среды: температуры, давления и плотности. Чем выше давление и плотность, тем выше амплитуда сигнала, но при высоких значениях температуры уровень сигнала может быть ниже, чем при стандартных условиях. Если амплитуда высшей гармоники сигнала меньше установленного фильтра, то величина расхода приравнивается к нулю.

Фильтр по амплитуде представляет собой величину амплитуды в у.е., заданную в регистре Modbus 40017. Если значение амплитуды сигнала меньше значения фильтра, измеренная частота сигнала приравнивается к нулю. Фильтр по амплитуде действует для сигналов во всем диапазоне частот. Включение амплитудного фильтра производится битом 0 регистра Modbus 40014.

Рисунок 9.8 - Фильтр по амплитуде

Фильтр по минимальному расходу (см. *рисунок 9.9*) является простым способом борьбы с самоходом, когда помеха близка к минимальному расходу. Если фильтр установлен выше минимального расхода, то паспортный диапазон будет снижен.

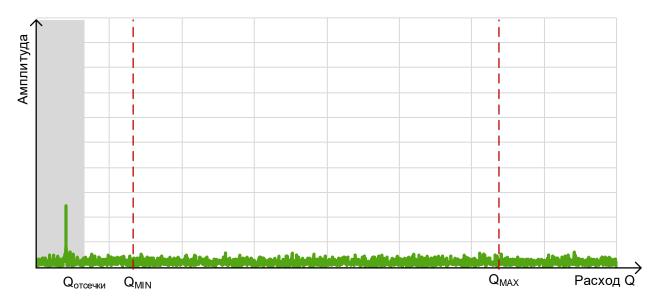


Рисунок 9.9 - Фильтр по минимальному расходу

Поскольку расход прямо пропорционален частоте, при установке фильтра по минимальному расходу, сначала по значению частоты вычисляется соответствующее значение расхода, а затем это значение сравнивается с установленным значением фильтра по минимальному расходу. Фильтр по минимальному расходу представляет собой величину расхода в м³/ч, заданную в регистре Modbus

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ЭЛЕКТРОННОГО БЛОКА (РАСШИРЕННАЯ ВЕРСИЯ «В», ВЕРСИЯ С ВЫЧИСЛИТЕЛЕМ «ВВ»)

40037. Если вычисленное значение расхода меньше значения фильтра, расход приравнивается к нулю.

Степень демпфирования расхода позволяет усреднять измеренные значения расхода за количество выборок, указанное в регистре Modbus 40019 (целое значение от 0 до 10).

Медианная фильтрация представляет *собой* способ защиты от случайной помехи. Медианный фильтр может использоваться на 3, 5, 7 точек и конфигурируется битами 6-8 регистра Modbus 40014. Значения из N последних измерений расхода, где N соответствует выбранному количеству точек, сортируются в порядке возрастания и значение, находящееся в середине упорядоченного списка, поступает на выход фильтра.

Стабильность и уровень сигнала зависит от техпроцесса, и каждый раз должны определяться пользователем при работе с прибором. Но для долговременной и стабильной работы прибора не рекомендуется устанавливать отсечку выше, чем 0,5 от минимальной амплитуды сигнала.

Значение амплитуды сигнала после всех фильтров содержится в регистре Modbus 30010. Вычисленное значение частоты сигнала находится в регистре Modbus 30016.

9.8 Возможные неисправности и способы их устранения

Возможные неисправности и способы их устранения приведены в таблице 9.4.

Таблица 9.4 – Способы устранения типовых неисправностей

	ооы устранения типовых неист	
Неисправность	Вероятная причина	Способ устранения
1 При включенном питании и наличии потока	Неправильное подключение проводов питания и сигнальных проводов к расходомеру.	Произвести проверку подключения кабеля или проводов питания согласно схемам подключения в п.8.4.
подключенный регистрирующий прибор или	Обрыв проводов подключения питания или сигнальных проводов.	Проверить и в случае обрыва заменить кабель или провода питания и сигнальные провода.
программа «ЭМИС Интегратор» показывают расход равный «0».	Напряжение питания не соответствует необходимому значению.	Проверить источник питания и установить напряжение питания в соответствии с требованиями п.7.1 данного руководства.
На частотном и цифровом выходах отсутствуют сигналы.	Расход ниже минимального расхода для данного типа расходомера.	Открыть полностью запорно–регулирующую арматуру.
CreytorBylor ovimasis.	Величина отсечки по силе сигнала расходомера настроена неправильно.	Настроить виброустойчивость с помощью программы «ЭМИС Интегратор» путем уменьшения величины отсечки по силе сигнала.
	При подсоединении по цифровому выходу неправильно выбран COM порт компьютера.	Необходимо через панель управления компьютера войти в раздел «Система» и определить номер СОМ порта компьютера, к которому подсоединен прибор, после чего в настройках программы «ЭМИС Интегратор» установить соответствующий порт.
	Выход из строя электронного блока вследствие внешнего воздействия.	Заменить комплект электронных плат. С помощью программы «ЭМИС Интегратор» восстановить метрологические коэффициенты и настройки прибора. Цифровой файл с настройками прибора запрашивается на заводе-изготовителе. При этом все метрологические характеристики, указанные в паспорте, полностью сохраняются.
2 Показания мгновенного расхода на регистрирующем приборе нестабильны. Частотный выходной сигнал расходомера нестабилен.	Монтаж расходомера выполнен с нарушениями требований РЭ расходомера: - большая разница между диаметрами трубопровода и расходомера; - не выдержана длина прямых участков; - выступают прокладки.	Монтаж расходомера произвести в соответствии с требованиями к монтажу РЭ расходомера.
	Наличие газовых пузырей в жидкости.	Удалить газовые включения.
	Вышел из строя чувствительный элемент (сенсор).	Заменить чувствительный элемент (сенсор)
	Несоответствие реального расхода диапазону расхода установленной модели расходомера.	Заменить расходомер на другой, у которого, диапазон измеряемого расхода соответствует реальному расходу.

Продолжение таблицы 9.4

Неисправность	Вероятная причина	Способ устранения
3 Потока измеряемой среды в трубопроводе нет, а на выходных линиях фиксируются сигналы наличия расхода среды	Высокий уровень вибрации трубопровода, который превышает заявленные параметры виброустойчивости.	Необходимо выполнить следующие мероприятия для устранения неисправности: - заполнить трубопровод измеряемой средой; - изменить положение расходомера, повернув корпус вокруг оси на 90°; - с помощью программы «ЭМИС Интегратор» увеличить значение отсечки по силе сигнала; - выявить источник вибрации (например - насос) и уменьшить величину вибрации закреплением источника вибрации и трубопровода в месте установки расходомера; - с помощью программы «ЭМИС Интегратор» настроить фильтрацию сигнала с сенсора.

Для вывода и индикации неисправностей в электронном блоке используются: светодиод «Статус» на интерфейсной плате (со стороны клеммных колодок) и светодиод расположенный на плате ЖК-дисплея, плата индикации и диагностический регистр (№ 30001).

Светодиод «Статус» на интерфейсной плате (со стороны клеммных колодок) и светодиод расположенный на плате ЖК-дисплея индицируют текущее состояние электронного блока.

Режимы свечения светодиодов при неисправности приведены в *таблице 9.5*. Неисправности анализируются в порядке приоритетов. При обнаружении первой же неисправности дальнейший анализ прекращается и устанавливается соответствующий данной неисправности режим свечения светодиода.

Таблица 9.5 - Режимы свечения светодиода при неисправности

Приоритет неисправности	Фоновое свечение	Количество миганий в цикле (длительность цикла 3,2 секунды)	Неисправность
1	да	1	Обрыв проводов от блока усилителя
2	да	2	Сбой электроники
3	да	3	Неисправность датчика температуры или его подключения
4	да	4	Неисправность датчика давления или его подключения
5	нет	2	Ток или напряжение токовой петли не соответствуют норме
6	нет	3	Кавитация или хаотичное вихреобразование
7	нет	4	Амплитуда ускорения вибрации превышает заданный порог

При отсутствии неисправностей фонового свечения нет, с периодичностью цикла (3,2 с) производится одно мигание светодиода для индикации наличия питания.

Плата индикации с механическими кнопками (исполнение «СИМ») индицирует ошибку мигающей надписью «Е0001» при отсутствии связи с основным процессором. Плата с оптическими кнопками (исполнение «СИО»), кроме этого, индицирует ошибку «Е0002» в случае сильного загрязнения (запотевания, покрытия инеем) стекла, препятствующего управлению кнопками. В этом случае следует очистить и протереть стекло, выключить и затем снова подать питание. Это нужно для

ЭМИС-ВИХРЬ 200 РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ЭЛЕКТРОННОГО БЛОКА (РАСШИРЕННАЯ ВЕРСИЯ «В», ВЕРСИЯ С ВЫЧИСЛИТЕЛЕМ «ВВ»)

того, чтобы зафиксировать новый начальный уровень отражения от стекла (уровень нуля). Прибор выйдет на режим индикации текущих параметров и без перезагрузки, но управление кнопками может остаться неустойчивым.

При наличии неисправности индицируемой с помощью светодиода или выводимой на плате индикации, необходимо проверить её наличие и устранить её.

В случае если не удается устранить неисправность и отремонтировать расходомер или при плановой поверке расходомера не удается получить заявленные точностные характеристики, необходимо обратиться на предприятие-изготовитель или в сервисный центр.

Ремонт расходомеров допускается только с применением ЗИП производства АО "ЭМИС". Производитель не несет гарантийных обязательств в случае ремонта расходомеров при помощи ЗИП стороннего изготовителя.

9.9 Диагностика (NAMUR NE 107)

Рекомендация NAMUR NE 107 классифицирует диагностическую информацию по специальным категориям. Перечень категорий представлен в таблице 9.6.

Таблица 9.6 – Классификация диагностической информации NAMUR NE 107

Обозначение категории	Категория	Описание
F	Failure / Отказ (Ошибка)	Нештатное состояние, приводящее к невозможности дальнейшей эксплуатации.
С	Function check / Функциональное тестирование	Калибровка, симуляция, поверка и т.п.
S	Out of specification / Несоответствие спецификации (Предупреждение)	Выход параметра за диапазон, несохраненные настройки, наличие пузырьков газа в жидкости и т.п. При этом устройство может продолжать функционировать.
М	Maintenance required / Запрос на обслуживание	Самодиагностика показывает «уход» некоторых параметров от штатных значений или, например, подходит срок очередной поверки.

Диагностическая информация хранится в регистре Modbus 30001. Установленный в единицу бит означает активность события. В *таблице* 9.7 представлено побитное описание диагностического регистра, а также категории диагностической информации NAMUR NE 107.

Таблица 9.7 – Диагностический регистр

Номер бита	NAMUR NE 107	Описание
0	F	Сбой при чтении пользовательских констант (ошибка контрольной суммы)
1	S	Выход расхода при РУ за метрологический диапазон
2	F	Неисправность при самопроверке АЦП или при неисправности усилителя заряда. Данный бит "залипающий", после исчезновения неисправности он обнуляется только при выключении питания или после выполнения команды 65 (самопроверка)
3	F	Нет связи с процессором HART
4	M	Слишком низкое напряжение питания токовой петли

Продолжение таблицы 9.7

Номер бита	NAMUR NE 107	Описание
5	S	Ток петли не соответствует аналоговому сигналу
6	М	Обрыв датчика температуры
7	М	Цепь датчика температуры короткозамкнута
8	M	Неисправность датчика давления (ток менее 3,8 мА)
9	М	Перегрузка входа датчика давления (ток более 21 мА)
10	М	Частота на дискретном выходе может превысить 1200 Гц
11	S	Вероятно наличие кавитации
12	S	Вероятно хаотичное вихреобразование
13	S	Выход за пределы температуры электроники
14	M	Ошибка вычислителя
15	S	Амплитуда ускорения вибрации превышает 0,5g

Подробная диагностическая информация вычислителя содержится в регистре Modbus 30098.

ПО «ЭМИС-Интегратор» позволяет сформировать протокол диагностики электронного блока. Для этого необходимо открыть вкладку Настройки прибора->Диагностика прибора и нажать кнопку «Сформировать протокол диагностики». Диагностика прибора производится в течение 60 секунд. По окончании данного периода программа предложит сохранить электронный протокол диагностики в формате *.xls. Данный файл можно открыть с помощью программы Microsoft Excel.

9.10 Сброс (обнуление) счетчиков

Сброс (обнуление) обнуляемых счетчиков производится с помощью индикатора электронного блока, либо по протоколу Modbus.

Для сброса обнуляемых счетчиков по протоколу Modbus необходимо записать «1» в бит 7 регистра флагов (Coils) (*см. таблицу 9.7*).

Таблица 9.7 - Сброс обнуляемых счетчиков по протоколу Modbus

Счетчик	№ регистра Modbus	Уровень доступа
Обнуляемый счетчик объема при РУ Обнуляемый счетчик массы	10008	0
Обнуляемый счетчик объема в Ст.У.	10008	U
Обнуляемый счетчик объема в погружном режиме		

Порядок сброса обнуляемых счетчиков через дисплей, необходимые уровни доступа, а также номер регистра приведены в *таблице 9.8.* Для сброса необходимо записать «12345» в регистр, предназначенный для сброса обнуляемых счетчиков.

Таблица 9.8 – Сброс обнуляемых счетчиков через дисплей

Счетчик	Дисплей	№ регистра Modbus	Уровень доступа
Обнуляемый счетчик объема при РУ Обнуляемый счетчик массы Обнуляемый счетчик объема в Ст.У. Обнуляемый счетчик объема в погружном режиме	Изменение регистров→ Выбор регистра→ Регистр 41031	41031	0

Приложение А. Перечень ссылочных документов

(справочное)

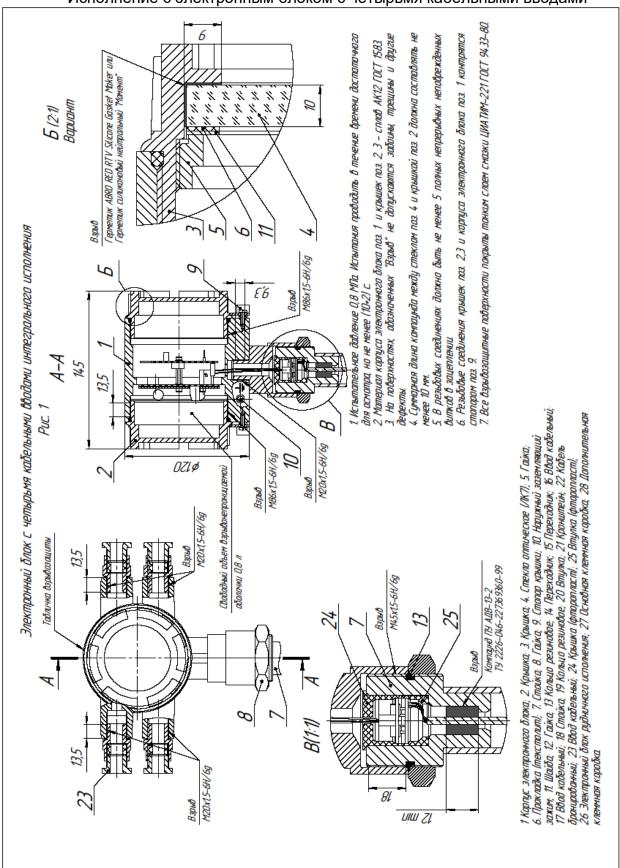
Таблица А1

Обозначение документа	Наименование	Номера пунктов
BCH 332-74	Инструкция по монтажу электрооборудования, силовых и осветительных сетей взрывоопасных зон	5.2
FOCT 6651-2009	Государственная система обеспечения единства измерений (ГСИ). Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний	7.7
<u>FOCT P 8.662-2009</u>	Государственная система обеспечения единства измерений (ГСИ). Газ природный. Термодинамические свойства газовой фазы. Методы расчетного определения для целей транспортирования и распределения газа на основе фундаментального уравнения состояния AGA8	9.5
<u>ΓΟCT 14254-2015</u>	Степени защиты, обеспечиваемые оболочками (Код IP)	2
<u>FOCT 15150-69</u>	Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды	2
<u>FOCT 31610.0-2014</u>	Взрывоопасные среды. Часть 0. Оборудование. Общие требования	2
ГОСТ 31610.1-2014	Взрывоопасные среды. Часть 1. Оборудование с видом взрывозащиты "взрывонепроницаемые оболочки "d"	2
ГОСТ 31610.11- 2014	Взрывоопасные среды. Часть 11. Оборудование с видом взрывозащиты "искробезопасная электрическая цепь "i"	2
<u>ГОСТ 31610.17-</u>	Электрооборудование для взрывоопасных газовых сред.	2
2012 (IEC 60079- 17:2002)	Часть 17. Проверка и техническое обслуживание электроустановок во взрывоопасных зонах (кроме подземных выработок)	
<u>ГСССД МР 147-</u> 2008	Методика. Расчет термодинамических характеристик воды и водяного пара	9.5
Приказ от 19 ноября 2013 года N 550	Правила безопасности в угольных шахтах	5.2
Приказ Минтруда России от 24 июля 2013г №328н	Приказ Минтруда России <u>от 24 июля 2013г №328н</u> «Об утверждении Правил по охране труда при эксплуатации электроустановок»	5.2
ПУЭ	Правила устройств электроустановок	2, 5.2
пээп	Правила эксплуатации электроустановок потребителей	2
FOCT P 52931-2008	Приборы контроля и регулирования технологических процессов. Общие технические условия	2
FOCT 30319.2-2015	Газ природный. Методы расчета физических свойств. Вычисление физических свойств на основе данных о плотности при стандартных условиях и содержании азота и диоксида углерода	9.5
FOCT 30319.3-2015	Газ природный. Методы расчета физических свойств. Вычисление физических свойств на основе данных о компонентном составе	9.5

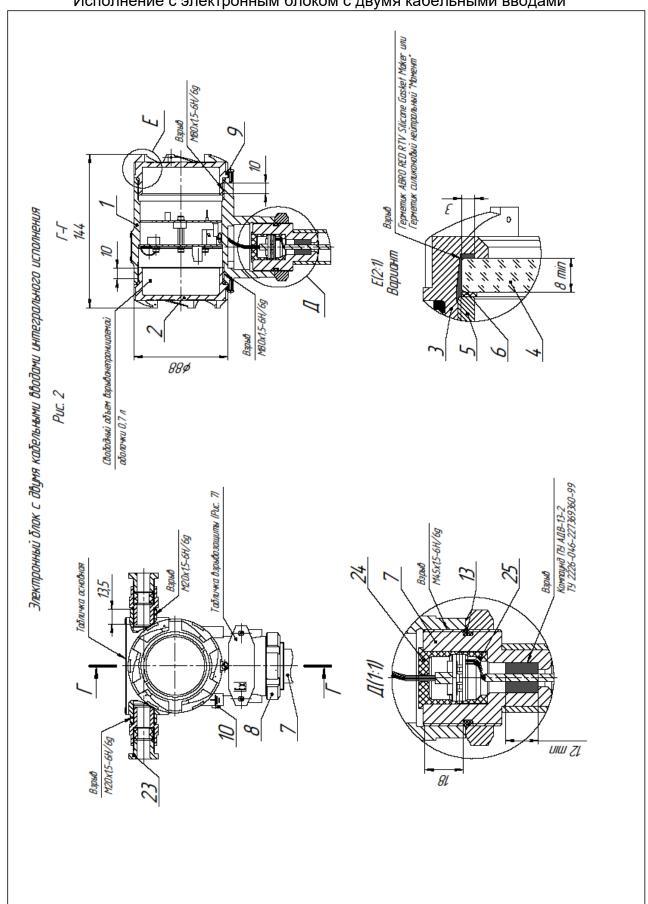
РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ЭЛЕКТРОННОГО БЛОКА ВИХРЬ 200 (РАСШИРЕННАЯ ВЕРСИЯ «В», ВЕРСИЯ С ВЫЧИСЛИТЕЛЕМ «ВВ»)

Обозначение документа	Наименование	Номера пунктов
ГСССД 8-79	Воздух жидкий и газообразный. Плотность, энтальпия, энтропия и изобарная теплоемкость при температурах 70-1500 К и давлениях 0,1-100 МПа	9.5
ГСССД МР 113-03	Определение плотности, фактора сжимаемости, показателя адиабаты и коэффициента динамической вязкости влажного нефтяного газа в диапазоне температур 263500 К при давлениях до 15 МПа	9.5

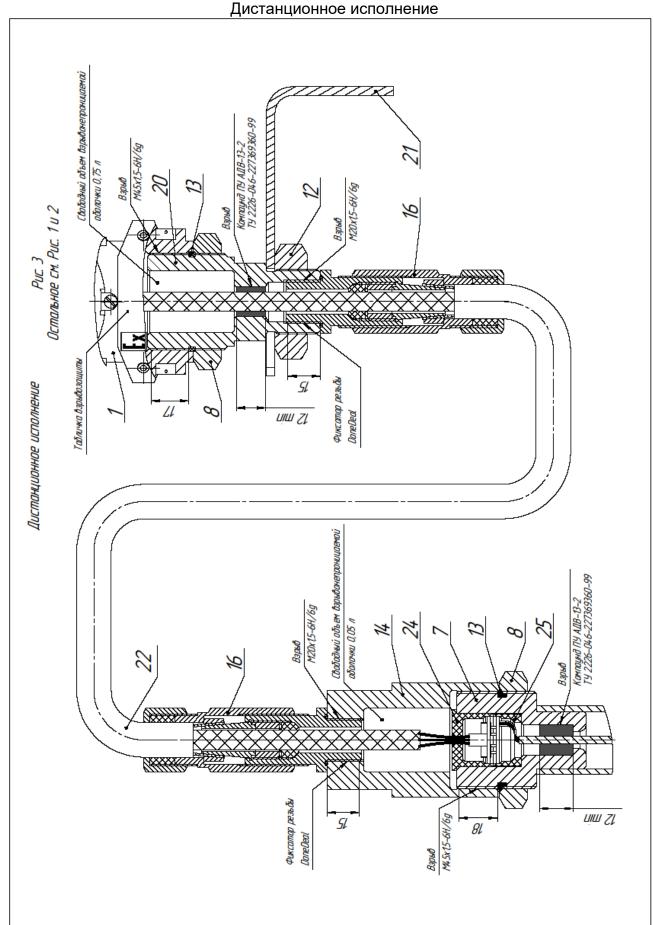
Приложение расходомеров Б. Чертеж

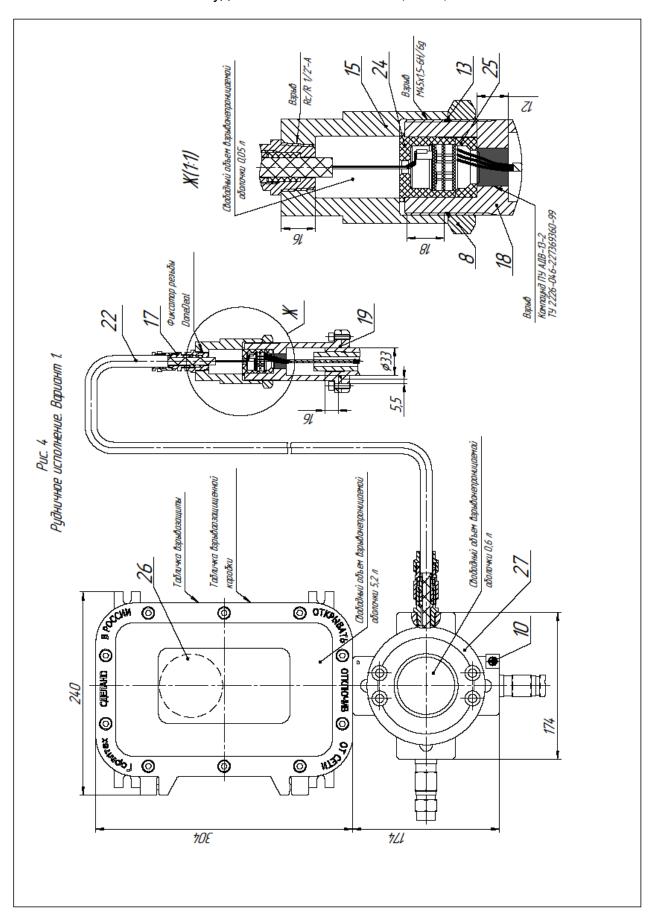

средств

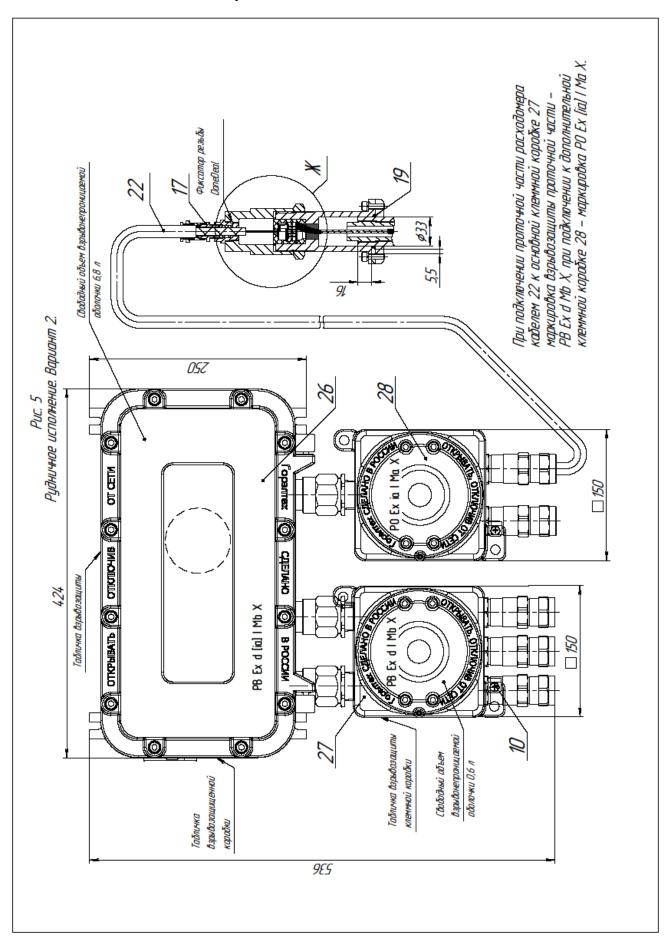
обеспечения


взрывозащиты

(обязательное)


Исполнение с электронным блоком с четырьмя кабельными вводами


Исполнение с электронным блоком с двумя кабельными вводами


Пиотолиционное меделиония

Рудничное исполнение РВ, РВИ, РО

Рудничное исполнение РО-РВ

Приложение В. Описание протокола «Modbus»

(справочное)

Протокол интерфейса практически полностью повторяет спецификации протокола Modbus RTU (Rev.G). Поддерживаются следующие функции:

Таблица В.1 – Поддерживаемые функции

Наименование команды (функции)	Код функции	Код подфункции
Тайменование команды (функции)	(HEX)	(HEX)
Стандартные команды:		
Чтение регистров флагов (Coils)	01	
Чтение входных регистров	04	
Чтение регистров хранения	03	
Запись одного регистра флагов	05	
Чтение идентификатора устройства	11	
Запись одиночного регистра	06	
Запись множественных регистров	10	
Диагностика	08	
Диагностические подфункции:		
Возврат данных запроса		00
Перезапуск опции коммуникации		01
Возврат диагностического регистра		02
Установка режима "Только слушания"		04
Сброс значений счетчиков и диагностического регистра		0A
Возврат общего количества сообщений шины		0B
Возврат общего количества ошибок связи шины		0C
Возврат общего количества ошибок исключения шины		0D
Возврат общего количества сообщений устройству		0E
Возврат общего количества не переданных ответов		0F
Возврат общего количества NAK устройства		10
Возврат количества состояний занятости устройства		11
Возврат количества перегрузок символами шины		12
Пользовательские команды:		
Провести тестирование канала развязки и АЦП датчика вихрей	41	
Ввод пароля	43	
Установка границ расходов для токового выхода	45	

Особенности выполнения отдельных функций будут указаны при их описании.

Функция 01h (чтение значений регистров флагов)

Функция 04h (чтение входных регистров)

Данную функцию можно использовать только для чтения входных регистров. Далее для описания формата регистров будут использоваться обозначения:

Int 16 - двоичное 16-битное число без знака

Запрос и ответ стандартные.

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ЭЛЕКТРОННОГО БЛОКА (РАСШИРЕННАЯ ВЕРСИЯ «В», ВЕРСИЯ С ВЫЧИСЛИТЕЛЕМ «ВВ»)

Приложение В

Float - двоичное 32-битное число в формате IEEE 754-2008

Int 32 - двоичное 32-битное число без знака

Регистры длиной более 16 бит размещаются по двум последовательно расположенным логическим адресам в порядке младшее слово, старшее слово. Формат запроса и ответа – стандартный.

Числа в формате Float состоят из четырех байтов, например число 0,01 в формате IEEE754 представляется как 3C23D70A. В данной реализации протокола для данного числа байты передаются в последовательности d7, 0a, 3c, 23.

Числа в формате Int 32 состоят из четырех байтов. В данной реализации протокола для числа 12d756a0h байты передаются в последовательности 56, a0, 12, d7.

Ограничение на длину запрашиваемого блока данных соответствует принятому в Modbus RTU, но для целей диагностики в данной реализации функции существует несколько специальных комбинаций адресов и количества запрашиваемых регистров, при которых расходомер, тем не менее, выдает запрашиваемую информацию, что не предусматривается стандартной реализацией протокола:

Адрес	Количество регистров	Содер	эжимое			
36145	512	Выборки сигна	ла датчика	вихрей		
37169	512	Выборки сигна	ла датчика	ускорения		
33073	512	Спектр мощно	сти спектра	датчика вихре	й	
34097	512	Выборки сигна	ла датчика	вихрей после в	всех фильтро	ОВ
38193	64	64-точечный	спектр	мощности	датчика	вибрации
(акселер	ометра)					

Значения спектра мощности могут находиться в диапазоне от 0 до 16383, значения выборок сигналов — в диапазоне от —32768 до 32767. При сокращении используемого числа точек преобразования Фурье (задаваемое регистром 40928) количество запрашиваемых значений должно пропорционально уменьшаться.

Примечание: из-за несинхронности поступления команд протокола Modbus и необходимости использования для внутренней обработки данных (устранение постоянной составляющей, наложение оконной функции) одного буфера в оперативной памяти, в сигналах датчиков возможно появление «ступенек» и видимых эффектов от частичного наложения оконной функции. Это не является признаком каких-либо неисправностей.

Функция 03h (чтение регистров хранения)

Данную функцию можно использовать только для чтения регистров хранения, формат запроса и ответа стандартный. По причине ограничений протокола максимальное количество регистров, которое может быть получено каждой командой, равно 126.

Функция 05h (запись одного регистра флагов) Запрос и ответ стандартные.

Функция 11h (чтение идентификатора устройства)

Запрос – стандартный.

Ответная посылка содержит:

- Адрес
- Код функции 11h
- Количество байт 12
- Байт FFh
- Индикатор включения FFh
- Дополнительные данные ASCII-строка «EV205 8.04».
- Контрольная сумма CRC16

Функция 06h (запись одиночного регистра)

В связи с тем, что выполнение записи во флэш-память занимает некоторое время, обычно при получении данной команды производится отложенная запись, а до ее завершения при повторном получении подобных команд прибор отвечает состоянием «занят».

Функция 10h (запись множественных регистров)

В связи с тем, что выполнение записи во флэш-память занимает некоторое время, обычно при получении данной команды производится отложенная запись, а до ее завершения при повторном получении подобных команд прибор отвечает состоянием «занят». Из-за ограничений протокола максимальное количество регистров, которое может быть записано одной командой, равно 126. формат запроса и ответа стандартный.

Функция 08h (диагностика)

Запрос – стандартный.

Ответная посылка содержит:

- Адрес
- Код функции 08h
- Код подфункции
- Дополнительные данные. Содержимое зависит от выполняемой подфункции
 - Контрольная сумма CRC16

Функция 41h (провести самотестирование). В связи с относительно большим временем выполнения самотестирования, его результат в ответе не передается. Вместо этого он заносится в соответствующий бит диагностического регистра 30001, а при отказе АЦП или усилителя заряда влияет также на свечение светодиодного индикатора.

Запрос содержит:

- Адрес
- Код функции 41h
- Контрольная сумма CRC16

Ответная посылка полностью совпадает с запросом.

Функция 43h (ввод пароля). Текущий уровень доступа (регистр 30046) после ввода данной команды может быть прочитан командой чтения входных регистров.

Запрос содержит:

- Адрес
- Код функции 43h
- Пароль (число Int32) в порядке старший байт, ..., младший байт (всего 4 байта)
- Контрольная сумма CRC16

Ответная посылка содержит:

- Адрес
- Код функции 43h
- Контрольная сумма CRC16

Карта регистров протокола «Modbus»

В таблице В.2 указаны регистры флагов (coils в терминологии протокола Modbus)

В таблице В.3 указаны входные регистры (input registers в терминологии протокола Modbus)

В таблице В.4 указаны регистры хранения (holding registers в терминологии протокола Modbus) Пояснения к таблицам В.2-В.4:

- Если для регистра не указан формат, такой регистр хранит 16-битное число без знака. Переменные в формате чисел с плавающей точкой (float) и 32-битные целые числа без знака (int32) занимают по два следующих подряд регистра. В этих случаях качестве адреса указывается регистр с меньшим номером.
 - Регистры флагов считываются функцией 01, модифицируются функцией 05.
 - Регистры хранения считываются функцией 03, модифицируются функциями 06 и 16 (10 Hex).
 - Входные регистры считываются функцией 04.
- Для таблиц, содержащих параметры в формате числе с плавающей точкой, указывается адрес первого элемента таблицы, адрес каждого последующего элемента увеличивается на 2.

В тексте приняты сокращения: РУ – рабочие условия, Ст.У – стандартные условия.

Таблица В.2 - Регистры флагов

Nº	Адрес	Значение/действие	Уровень доступа
10001	0	Заводские константы сохранены	0 (только чтение)
10002	1	Сохраненные заводские константы содержат ошибки CRC	0 (только чтение)
10003	2	Сохранённые значения счётчиков содержат ошибки CRC	0 (только чтение)
10004	3	Соответствие пользовательских констант заводским (1-соответствуют, 0-не соответствуют)	0 (только чтение)
10005	4	Проверка соответствия пользовательских констант заводским (1-проверка запущена,0-обычный режим)	1 (чтение/запись)
10006	5	Установка пользовательских констант в качестве заводских (1-запущено, 0-обычный режим)	3 (чтение/запись)
10007	6	Восстановление заводских констант (1-восстановление запущено, 0-обычный режим)	2 (чтение/запись)
10008	7	Сброс обнуляемых счетчиков	0 (чтение/запись)

Таблица В.3 - Входные регистры

Nº,	Л прос	
м _≌ , формат	Адрес, формат	Описание переменной
30001	0	Диагностический регистр. Единичные значения битов кодируют следующие ситуации:
		бит 0 сбой при чтении пользовательских констант (ошибка контрольной суммы)
		бит 1 выход расхода при РУ за метрологический диапазон
		бит 2 неисправность при самопроверке АЦП или при неисправности усилителя заряда. Данный бит "залипающий", после исчезновения неисправности он обнуляется только при выключении питания или после выполнения команды 65 (самопроверка)
		бит 3 нет связи с процессором HART
		бит 4 слишком низкое напряжение питания токовой петли
		бит 5 ток петли не соответствует аналоговому сигналу
		бит 6 обрыв датчика температуры
		бит 7 цепь датчика температуры короткозамкнута
		бит 8 неисправность датчика давления (ток менее 3,8 мА)
		бит 9 перегрузка входа датчика давления (ток более 21 мА)
		бит 10 частота на дискретном выходе может превысить 1200 Гц
		бит 11 вероятно наличие кавитации
		бит 12 вероятно хаотичное вихреобразование
		бит 13 выход за пределы температуры электроники
		бит 14 ошибка вычислителя
		бит 15 амплитуда ускорения вибрации превышает 0,5g
30002 float	1 float	Температура измеряемой среды в градусах Цельсия. При отказе датчика температуры выводится установленное в регистре 40031 значение
30004 float	3 float	Температура плат блока электроники в градусах Цельсия. Точность измерения определяется встроенным в процессор датчиком температуры и ориентировочно составляет \pm 5 °C. Данный параметр не нормируется.
30006 float	5 float	Давление измеряемой среды в МПа. При отказе датчика давления выводится установленное в регистре 40027 значение

Прооолж	Продолжение таблицы В.3				
№, формат	Адрес, формат	Описание переменной			
30008 float	7 float	Вычисленная плотность в кг/м ³ . При отказе датчика давления и/или температуры используется установленное в регистре 40023 значение			
30010 float	9 float	Среднеквадратическое значение (амплитуда) сигнала после всех фильтров			
30012 float	11 float	Расход объёмный в м ³ /ч			
30014 float	13 float	Расход массовый в т/ч			
30016 float	15 float	Частота вихреобразования в Гц			
30018 float	17 float	Выходная частота дискретного выхода в Гц при работе в частотном и импульсном режимах			
30020 float	19 float	Выходной ток аналогового выхода в мА			
30022 int32	21 int32	Накопленный объём в миллилитрах при РУ			
30024 int32	23 int32	Накопленный объём в кубометрах при РУ			
30026 int32	25 int32	Накопленная масса в граммах			
30028 int32	27 int32	Накопленная масса в тоннах			
30030 int32	29 int32	Обнуляемый сумматор объёма при РУ в мл			
30032 int32	31 int32	Обнуляемый сумматор объёма при РУ в м ³			
30034 int32	33 int32	Обнуляемый сумматор массы в граммах			
30036 int32	35 int32	Обнуляемый сумматор массы в тоннах			
30038 int32	37 int32	Обнуляемый сумматор объёма альтернативной среды при РУ в мл			
30040 int32	39 int32	Обнуляемый сумматор объёма альтернативной среды при РУ в м3			
30042	41	Контрольная сумма метрологически значимых переменных			
30043	42	Контрольная сумма программного кода			
30044	43	Текущий код аналого-цифрового преобразования сигнала 4-20 мА от датчика давления			
30045	44	Дисперсия спектра (критерий кавитации и случайного вихреобразования)			
30046	45	Текущий уровень доступа. Может принимать значения от 0 (низкий) до 3 (при включении переключателя SW1:1 на плате процессора)			
30047	46	Амплитуда ускорения вибрации (g)			
float	float				

Продоля	кение таб	блицы В.3
№, формат	Адрес, формат	Описание переменной
30049 float	48 float	Частота вибрации. Регистр содержит значение спектральной составляющей с наибольшей амплитудой. Оцифровка сигнала акселерометра производится с той же частотой, что и сигнала датчика вихрей.
30051 float	50 float	Расход объёмный в м ³ /ч, приведенный к Ст.У
30053	52	Служебный
30054	53	Служебный
30055	54	Служебный
30056	55	Служебный
30057 float	56 float	Фактическая цена импульса (не совпадает с заданной при включении погружного режима)
30059	58	Расход соответствующий 1000 Гц (не совпадает с заданным при включении погружного режима)
float 30061 float	float 60 float	Расход соответствующий 0 Гц (не совпадает с заданным при включении погружного режима)
30063 float	62 float	Расход соответствующий 4 мА
30065 float	64 float	Расход соответствующий 20 мА
30067	66	Контрольная сумма программного кода процессора HART
30068	67	Диагностика RS-485 Общее количество сообщений, полученных устройством по системе
30069	68	Диагностика RS-485 Количество ошибок CRC
30070	69	Диагностика RS-485 Количество ответов исключений Modbus
30071 float	70 float	Ускорение виброперемещения, g
30073 float	72 float	Расход объёмный в м3/ч, в погружном режиме через внутренний диаметр трубы
30075 int32	74 int32	Накопленный объём в миллилитрах при РУ, в погружном режиме через внутренний диаметр трубы. Рассчитывается на основании регистра 30022
30077 int32	76 int32	Накопленный объём в кубометрах при РУ, в погружном режиме через внутренний диаметр трубы. Рассчитывается на основании регистра 30022, 30024.
30079 float	78 float	Удельная энтальпия насыщенного и перегретого водяного пара (кДж/кг)
30081 float	80 float	Накопленная тепловая энергия пара (МДж)
30083 int32	82 int32	Накопленная тепловая энергия пара (ГДж)

№, формат	Адрес, формат	Описание переменной
30085	84	Служебный
30086 int32	85 int32	Накопленный объем в миллилитрах, приведенный к Ст. У.
30088 int32	87 int32	Накопленный объем в кубометрах, приведенный к Ст. У.
30090 float	89 float	Вычисленная динамическая вязкость в мПа*с
30092 float	91 float	Вычисленная плотность при Ст.У. в кг/м ³
30094 float	93 float	Ток на входе 4-20 в мА
30096 float	95 float	Сопротивление датчика температуры, Ом
30098 int32	97 int32	Диагностический регистр вычислителя. Единичные значения битов кодируют следующие ситуации: бит 0 молярная доля азота не соответствует требуемым значениям бит 1 молярная доля диоксида углерода не соответствует требуемым значениям бит 2 молярная доля метана не соответствует требуемым значениям бит 3 молярная доля пропана не соответствует требуемым значениям бит 4 молярная доля пропана не соответствует требуемым значениям бит 5 молярная доля н-бутана не соответствует требуемым значениям бит 6 молярная доля изобутана не соответствует требуемым значениям бит 7 молярная доля изобутана не соответствует требуемым значениям бит 7 молярная доля изопентана не соответствует требуемым значениям бит 9 молярная доля гексана не соответствует требуемым значениям бит 10 молярная доля котана не соответствует требуемым значениям бит 11 молярная доля октана не соответствует требуемым значениям бит 12 молярная доля декана не соответствует требуемым значениям бит 13 молярная доля водорода не соответствует требуемым значениям бит 15 молярная доля кислорода не соответствует требуемым значениям бит 16 молярная доля кислорода не соответствует требуемым значениям бит 16 молярная доля кослорода не соответствует требуемым значениям бит 17 молярная доля воды/водяного пара не соответствует требуемым значениям бит 18 молярная доля воды/водяного пара не соответствует требуемым значениям бит 20 молярная доля сероводорода не соответствует требуемым значениям бит 20 молярная доля сероводорода не соответствует требуемым значениям бит 20 молярная доля сероводорода не соответствует требуемым значениям бит 22 выход доля доля сероводорода не соответствует требуемым значению бит 22 выход давления за пределы допускаемых значений бит 22 выход давления за пределы допускаемых значений бит 24 степень сухости насыщенного пара не соответствует требуемым значениям бит 25 плотность в стандартных условиях не соответствует требуемым значениям бит 26 абсолютная влажность нефтяного газа не соответствует требуемым значениям

№, формат	Адрес, формат	Описание переменной
30100 uint32	99 uint32	Обнуляемый счетчик объема в Ст.У. в мл
30102 uint32	101 uint32	Обнуляемый счетчик объема в Ст.У. в м ³
30104 uint32	103 uint32	Обнуляемый счетчик объема в погружном режиме в мл
30106 uint32	105 uint32	Обнуляемый счетчик объема в погружном режиме в м ³
30108 float	107 float	Вычисленное давление насыщенного пара в МПа
30110 float	109 float	Вычисленная температура насыщенного пара в С
30112 float	111 float	Накопленная тепловая энергия в Гкал
30114 float	113 float	Тепловая мощность теплоносителя в Гкал/ч

Таблица В.4 – Регистры хранения

№, формат	Адрес, формат	пры хранения Описание переменной	Уровень доступа
40001	0	Адрес устройства в сети Modbus. Должен быть в диапазоне от 1 до 247 согласно спецификации протокола.	1
40002	1	Скорость обмена данными по интерфейсу RS485. Кодируется следующим образом:	1
		0 – 4800 бит/с,	
		1 – 9600 бит/с,	
		2 – 19200 бит/с,	
		3 – 38400 бит/с (значение по умолчанию)	
40003	2	Серийный номер расходомера	3
40004	3	Вид измеряемой среды. Кодируется следующим образом: 0 — вода, 1 — жидкость №1, 2 — жидкость №2, 3 — жидкость №4, 5 — насыщенный водяной пар, 6 — другие газы, 7 — природный газ по ГОСТ Р 8.662-2009, 8 — влажный нефтяной газ по ГСССД МР113-03, 9 — воздух по ГСССД 8-79, 10 - перегретый водяной пар, 11 - природный газ по ГОСТ 30319.2-2015, 12 - природный газ по ГОСТ 30319.3-2015, 13 - Азот по ГСССД МР134-2007, 14 - Ацетилен по ГСССД МР134-2007, 15 - Кислород по ГСССД МР134-2007, 16 - Диоксид углерода по ГСССД МР134-2007, 18 - Аргон по ГСССД МР134-2007, 19 - Водород по ГСССД МР134-2007,	3
40005	4	Условный диаметр проточной части в миллиметрах	3
40006	5	Конфигурация режимов работы аналогового выхода. Младшие 4 бита кодируют первичную переменную, значение которой задает выходной ток:	2
		0 - выход отключен	
		1 - объёмный расход в м³/ч	
		2 - объёмный расход в м³/ч, приведенный к Ст.У	
		3 - массовый расход в т/ч	
		4 - температура в градусах Цельсия	
		5 - давление в МПа	
		Следующие три группы по 4 бита кодируют вторую, третью и четвертую динамическую переменную таким же образом, как и первичную, а также дополнительные параметры:	
		7 - объём при РУ в м³/ч	
		9 - масса в тоннах.	

№, формат	Адрес, формат	Описание переменной	Уровень доступа
40007	6	Конфигурация режимов работы дискретного (частотно-импульсного) выхода: 0 - частотный выход объёмного расхода с диапазоном от 0 до значения, установленного в регистре 40035. Диапазон частот всегда от 0 до 1000 Гц 1 - частотный выход расхода при Ст.У с диапазоном от 0 до значения, установленного в регистре 40035. Диапазон частот всегда от 0 до 1000 Гц 2 - частотный выход массового расхода с диапазоном от 0 до значения, установленного в регистре 40035. Диапазон частот всегда от 0 до 1000 Гц 3 - частотный выход абсолютного давления с диапазоном от значения, установленного в регистре 40033, до значения, установленного в регистре 40033, до значения, установленного в регистре 40035. Диапазон частот всегда от 0 до 1000 Гц 4 - частотный выход температуры с диапазоном от значения, установленного в регистре 40033, до значения, установленного в регистре 40033, до значения, установленного в регистре 40033, до значения, установленного в регистре 40035. Диапазон частот всегда от 0 до 1000 Гц 5 - импульсный выход объёма с ценой импульса в литрах, установленной в регистре 40039 6 - импульсный выход объёма с ценой импульса в литрах при Ст.У, установленной в регистре 40039 7 - импульсный выход массы с ценой импульса в килограммах, установленной в регистре 40039 8 - реле расхода (контакт нормально открытый), порог устанавливается в регистре 40039 9 - реле расхода (контакт нормально замкнут), порог устанавленной в регистре 40030. Контакт нормально разомкнут 11 - массовый дозатор с величиной порции в миллилитрах, установленной в регистре 40903. Контакт нормально замкнут 12 - объёмный дозатор с величиной порции в граммах, установленной в регистре 40903. Контакт нормально замкнут 13 - массовый дозатор с величиной порции в граммах, установленной в регистре 40903. Контакт нормально замкнут 13 - массовый дозатор с величиной порции в граммах, установленной в регистре 40903. Контакт нормально замкнут 13 - массовый дозатор с величиной порции в граммах, установленной в регистре 40903. Контакт нормально замкнут 13 - массовый	2
40008	7	Периодичность записи (в минутах) накопительных счетчиков, минимальных и максимальных зарегистрированных значений расхода, давления и температуры в архив. При нулевом значении запись не производится.	2
40009	8	Код АЦП, соответствующий 6 мА на входе датчика давления	2
40010	9	Код АЦП, соответствующий 14 мА на входе датчика давления	2
40011	10	Таймаут сброса счетчика дозатора в миллисекундах (от 1 до 65535). Установка нулевого значения данного параметра при работе дискретного выхода в режиме дозатора приводит к некорректной работе выхода.	2

Nº,	Адрес,	Описание переменной	Уровень
формат	формат		доступа
40012	11	Периодичность выполнения самодиагностики в часах. При нулевом значении выполняется только при получении соответствующей	2
		команды по протоколам Modbus или HART. Результат заносится в диагностический регистр.	
40013	12	Конфигурация программных заградительных фильтров. Биты имеют	2
40010	12	следующее назначение:	
		бит 0 - включение заградительного фильтра на 50 Гц бит 1 - включение первого заградительного фильтра	
		бит 2 - включение второго заградительного фильтра бит 3 - включение третьего заградительного фильтра	
		бит 4 - включение четвертого заградительного фильтра	
40014	13	Включение программного амплитудного фильтра. Биты имеют следующее назначение:	2
		бит 0 - включение амплитудного фильтра	
		бит 1 - включение адаптивного фильтра	
		бит 2 - включение автоматического определения фазы среды. Алгоритм включает использование амплитудного фильтра	
		бит 3 - включение использования таблиц вязкости	
		бит 4 - включение использования таблиц плотности	
		бит 5 - включение автоматической регулировки коэффициента усиления сигнала пьезодатчика	
		биты 6-8 - включение и установка длины медианного фильтра. При ненулевом значении данного поля включается медианный фильтр, длина буфера которого равна значению поля. Рекомендуется устанавливать нечетные значения (3, 5 или 7)	
		бит 9 – отключение коррекции по числу Рейнольдса	
		бит 10 – включение погружного режима	
40015	14	Конфигурация датчика давления. Кодируется следующим образом:	1
		0 - используется заданное "вручную" давление (МПа абс.)	
		1 – подключен датчик абсолютного давления в МПа	
		2 - подключен датчик абсолютного давления в кгс/см²	
		3 - подключен датчик избыточного давления в МПа. Для расчета абсолютного давления суммируется со значением, заданным в регистре 40029	
		4 - подключен датчик избыточного давления в кгс/см ² . Для расчета абсолютного давления суммируется со значением, заданным в регистре 40029	
40016	15	Статическая характеристика датчика температуры. Кодируется следующим образом:	1
		0 - используется заданная "вручную" температура (в С)	
		1 - Pt100 (W100 = 1.3850)	
		2 - 100Π (W100 = 1.3910)	
		3 - 50M	
40017	16	Порог отключения расходомера по амплитуде. Если амплитуда основной гармоника сигнала меньше данного значения, расход устанавливается равным нулю.	2

№, формат	Адрес, формат	Описание переменной	Уровень доступа
40018	17	Код АЦП, соответствующий току 18 мА от датчика давления	2
40019	18	Степень демпфирования расхода (от 0 до 10)	2
40020	19	Порог предупреждения о паразитном вихреобразовании. Сравнивается с дисперсией спектра. Если при этом среднеквадратичное спектра (RMS) в допустимых пределах - то диагностируется хаотичное вихреобразование, если RMS больше допустимого – кавитация. В диагностическом регистре устанавливаются соответствующие биты состояния.	2
40021	20	Параметр, индицируемый в 1-й строке дисплея. Кодируется следующим образом: 1 - циклически с периодом 2 с выводятся все параметры, перечисленные далее для кодов 2-9 2 - текущее значение объёмного расхода в м³/ч 3 - текущее значение массового расхода, приведенного к Ст.У, в м³/ч 4 - текущее значение массового расхода в т/ч 5 - температура измеряемой среды, °C 6 - температура плат блока электроники, °C 7 - давление измеряемой среды, Мпа 8 - процентное отношение значения объёмного расхода к номинальному (паспортному) диапазону измерения 9 - буква «Е», пробел и содержимое диагностического регистра в шестнадцатеричном формате. Примечание — При включении погружного режима (40014): 3 — текущее значение объёмного расхода через погружной режим, в м³/ч	1
40022	21	Параметр, индицируемый во 2-й строке дисплея. Кодируется следующим образом: 1 - циклически с периодом 2 с выводятся все параметры, перечисленные далее для кодов 2-8 2 - накопленный объём, м³ 3 - накопленный объём, приведенный к Ст.У, м³ 4 - накопленная масса, т 5 - значение тока в токовой петле, мА 6 - значение частоты на дискретном выходе, Гц 7 - контрольная сумма программы в шестнадцатеричном формате, знак «минус» и контрольная сумма метрологически значимых данных в том же формате. 8 - буква «Е», пробел и содержимое диагностического регистра в шестнадцатеричном формате. 9 - обнуляемый накопленный объём, м³ 10 - обнуляемый накопленный объём, приведенный к Ст.У, м³ 11 - обнуляемая накопленная масса, т Примечание – При включении погружного режима (40014): 3 – текущее значение объёмного расхода в погружном режиме, в м³/ч 10 - обнуляемый накопленный объём в погружном режиме, м³	1
40023 float	22 float	Заданная плотность для РУ в кг/м ³ . Используется при запрете в регистре 40014 использования таблиц «температура-плотность»	1
40025 float	24 float	Заданная плотность для Ст.У в кг/м ³ . Используется для вычисления плотности газов и приведения объемного расхода к Ст.У.	1

Продолжение таблицы В.4							
№, формат	Адрес, формат	Описание переменной	Уровень доступа				
40027 float	26 float	Заданное давление. Используется при отсутствии или неисправности датчика давления	1				
40029 float	28 float	Атмосферное давление в МПа	1				
40031 float	30 float	Заданная температура измеряемой среды. Используется при отсутствии или неисправности датчика температуры	2				
40033 float	32 float	Нижний предел диапазона измерения параметра для частотно- импульсного выхода	2				
40035 float	34 float	Верхний предел диапазона измерения параметра для частотно- импульсного выхода	2				
40037 float	36 float	Порог отключения расходомера по минимальному расходу в м ³ /ч. Если вычисленный расход меньше данного значения, он принудительно устанавливается равным нулю.	2				
40039 float	38 float	Цена выходного импульса в литрах или килограммах. Используется при работе частотного выхода в режиме вывода данных об объёмном или массовом расходе	2				
40041 float	40 float	Отношение расхода к частоте срыва вихрей (основной К-фактор)	3				
40043 float	42 float	Служебный параметр. Должен быть 1	3				
40045 float	44 float	Коэффициент сжимаемости в рабочих условиях	1				
40047 float	46 float	Служебный параметр. Должен быть 1	3				
40049 float	48 float	Коэффициент преобразования К-фактора. Значение по умолчанию 3,6	3				
40051 float	50 float	Служебный параметр. Должен быть 1	3				
40053 float	52 float	Поправочный коэффициент вычисления массового расхода	1				
40055 float	54 float	Минимальное зафиксированное давление измеряемой среды в МПа	2				
40057 float	56 float	Максимальное зафиксированное давление измеряемой среды в МПа	2				
40059 float	58 float	Минимальный зафиксированный объёмный расход в м ³ /ч	2				
40061 float	60 float	Максимальный зафиксированный объёмный расход в м ³ /ч	2				
40063 float	62 float	Максимальная зафиксированная температура среды в градусах Цельсия	2				
40065 float	64 float	Сдвиг нуля датчика температуры в градусах Цельсия. Используется для корректировки статической характеристики подключенного преобразователя	2				
40067 float	66 float	Нижний предел датчика давления, единицы измерения определяются регистром 40015	1				
40069 float	68 float	Верхний предел датчика давления, единицы измерения определяются регистром 40015	1				

Nº,	кение таб Адрес,		Уровень
формат	формат	Описание переменной	доступа
40071 float	70 float	Служебный параметр	2
40073	72	Код АЦП, соответствующий 20 мА на входе датчика давления	2
40074	73	Резерв	
40075 float	74 float	Нижняя частота заграждающего фильтра 1. Все частоты задаются в Герцах	2
40077 float	76 float	Нижняя частота заграждающего фильтра 2	2
40079 float	78 float	Нижняя частота заграждающего фильтра 3	2
40081 float	80 float	Нижняя частота заграждающего фильтра 4	2
40083 float	82 float	Верхняя частота заграждающего фильтра 1	2
40085 float	84 float	Верхняя частота заграждающего фильтра 2	2
40087 float	86 float	Верхняя частота заграждающего фильтра 3	2
40089 float	88 float	Верхняя частота заграждающего фильтра 4	2
40091 float	90 float	Коэффициент пропускания заграждающего фильтра 1. Все программные фильтры имеют П-образную амплитудно-частотную характеристику. Все коэффициенты пропускания задаются в процентах от 0 до 100. В случае перекрытия диапазонов частот заграждения результирующий коэффициент в перекрывающейся части диапазона равен произведению коэффициентов пропускания в процентах, деленному на 100. Для предотвращения полного блокирования прохождения полезного сигнала коэффициент пропускания ограничен минимальным значением 1%.	2
40093 float	92 float	Коэффициент пропускания заграждающего фильтра 2	2
40095 float	94 float	Коэффициент пропускания заграждающего фильтра 3	2
40097 float	96 float	Коэффициент пропускания заграждающего фильтра 4	2
40099 float	98 float	Коэффициент С квадратного уравнения амплитудного фильтра для жидкостей – отсечка снизу. Уравнение имеет вид y=Ax²+Bx+C, где x – измеренное значение частоты вихреобразования, у – вычисленное значение, характеризующее амплитуду сигнала. В норме вычисленное значение амплитуды (выводится в регистре 30010) должно находится между значениями «отсечка снизу» и «отсечка сверху»	2
40101 float	100 float	Коэффициент В квадратного уравнения амплитудного фильтра для жидкостей – отсечка снизу	2
40103 float	102 float	Коэффициент А квадратного уравнения амплитудного фильтра для жидкостей – отсечка снизу	2
40105 float	104 float	Коэффициент С квадратного уравнения амплитудного фильтра для жидкостей – отсечка сверху	2

Продолжение таблицы В.4				
№, формат	Адрес, формат	Описание переменной		
40107 float	106 float	Коэффициент В квадратного уравнения амплитудного фильтра для жидкостей – отсечка сверху	2	
40109 float	108 float	Коэффициент А квадратного уравнения амплитудного фильтра для жидкостей – отсечка сверху		
40111 float	110 float	Нижняя частота амплитудного фильтра для жидкостей	2	
40113 float	112 float	Верхняя частота амплитудного фильтра для жидкостей	2	
40115 float	114 float	Коэффициент С квадратного уравнения амплитудного фильтра для газов – отсечка снизу	2	
40117 float	116 float	Коэффициент В квадратного уравнения амплитудного фильтра для газов – отсечка снизу	2	
40119 float	118 float	Коэффициент А квадратного уравнения амплитудного фильтра для газов – отсечка снизу	2	
40121 float	120 float	Коэффициент С квадратного уравнения амплитудного фильтра для газов – отсечка сверху	2	
40123 float	122 float	Коэффициент В квадратного уравнения амплитудного фильтра для газов – отсечка сверху	2	
40125 float	124 float	Коэффициент А квадратного уравнения амплитудного фильтра для газов – отсечка сверху	2	
40127 float	126 float	Нижняя частота амплитудного фильтра для газов	2	
40129 float	128 float	Верхняя частота амплитудного фильтра для газов	2	
40131	130	Настройка параметров связи По битам: 00 - без четности 01 – нечетное 10 – четное 0xx - 1 стоповый бит 1xx - 2 стоповых бита 0xxx - откл. фиксированного бита 1xxx - фиксированный бит в режиме четности	1	
40132	131	Резерв		
40133 float	132 float	Коэффициент погружного режима S	2	
40135 float	134 float	Таблица динамической вязкости в зависимости от температуры для среды с кодом 0. Таблица должна содержать пары значений «температура, вязкость». Вязкость должна быть введена в кг/м·с. Значения температуры должны монотонно возрастать с увеличением порядкового номера регистра. Значения вязкости, соответствующие промежуточным значениям температуры, вычисляются методом линейной интерполяции	2	
40167 float	166 float	Таблица динамической вязкости в зависимости от температуры для среды с кодом 1. Единица измерения вязкости – мПа⋅с, температура задается в °C.	2	

Nº,	Адрес,	Описание переменной	Уровень
формат 40198	формат 197	Таблица динамической вязкости в зависимости от температуры для	доступа 2
float 40231	float 230	среды с кодом 2 Таблица динамической вязкости в зависимости от температуры для	
float 40263	float 262	среды с кодом 3 Таблица динамической вязкости в зависимости от температуры для	2
float	float	среды с кодом 4	
40295 float	294 float	Таблица динамической вязкости в зависимости от температуры для среды с кодом 5	2
40327 float	326 float	Таблица динамической вязкости в зависимости от температуры для среды с кодом 6	2
40359 float	358 float	Таблица динамической вязкости в зависимости от температуры для среды с кодом 7	2
40391 float	390 float	Таблица динамической вязкости в зависимости от температуры для среды с кодом 8	2
40423 float	422 float	Таблица динамической вязкости в зависимости от температуры для среды с кодом 9	2
40455 float	454 float	Таблица плотности в зависимости от температуры для среды с кодом 0. Формат таблицы такой же, как и для таблиц «температура-вязкость». Плотность должна быть введена в кг/м³. Примечание. Среда с кодом 0 – это вода. Поскольку для воды плотность вычисляется аналитически, данная таблица в действительности не используется.	1
40487 float	486 float	Таблица плотности в зависимости от температуры для среды с кодом 1	1
40519 float	518 float	Таблица плотности в зависимости от температуры для среды с кодом 2	1
40551 float	550 float	Таблица плотности в зависимости от температуры для среды с кодом 3	1
40583 float	582 float	Таблица плотности в зависимости от температуры для среды с кодом 4	1
40615 float	614 float	Таблица плотности в зависимости от температуры для среды с кодом 5. Поскольку для насыщенного водяного пара плотность вычисляется аналитически, данная таблица в действительности не используется.	1
40647 float	646 float	Таблица плотности в зависимости от температуры для среды с кодом 6. Поскольку вычисление плотности для газов производится аналитически, данная область адресов фактически не используется.	1
40679 float	678 float	Таблица плотности в зависимости от температуры для среды с кодом 7. Поскольку вычисление плотности для газов производится аналитически, данная область адресов фактически не используется.	1
40711 float	710 float	Таблица плотности в зависимости от температуры для среды с кодом 8. Поскольку вычисление плотности для газов производится аналитически, данная область адресов фактически не используется.	1
40743 float	742 float	Таблица плотности в зависимости от температуры для среды с кодом 9. Поскольку вычисление плотности для газов производится аналитически, данная область адресов фактически не используется.	1
40775 float	774 float	Таблица коррекции в зависимости от числа Рейнольдса. Таблица состоит из 8 пар значений «число Рейнольдса – поправка в %%». Поправка при промежуточных значениях рассчитывается методом линейной интерполяции.	2

Nº,	Адрес,	Описание переменной	Уровень доступа
формат 40807 float	формат 806 float	Таблица коррекции в зависимости от расхода для жидкостей. Таблица состоит из 10 пар значений «нормированная частота – поправка в %%». Поправка при промежуточных значениях частоты рассчитывается методом линейной интерполяции. Нормированная частота равна отношению частоты вихреобразования к значению содержимого регистра 40887. Значения нормированных частот должны	
40847 float	846 float	увеличиваться с ростом номера регистра и все должны различаться. Таблица коррекции в зависимости от расхода для газов. Таблица состоит из 10 пар значений «нормированная частота – поправка в %%». Поправка при промежуточных значениях частоты рассчитывается методом линейной интерполяции. Нормированная частота равна отношению частоты вихреобразования к значению содержимого регистра 40887. Значения нормированных частот должны увеличиваться с ростом номера регистра и все должны различаться.	3
40887 float	886 float	Верхний предел диапазона частот вихреобразования в Герцах.	3
40889	888	Минимальная длительность импульса на частотно-импульсном выходе в импульсном режиме, мс. Минимальное значение - 1 мс и максимальное значение - 50% от текущего периода, устанавливаются автоматически при выходе за диапазон.	2
40891 float	890 float	Степень сухости насыщенного пара (01)	1
40893 int32	892 int32	Пароль уровня 2. Для обеспечения возможности ручного ввода паролей с клавиатуры дисплейной платы максимальное значение пароля должно быть не более 999999999.	2
40903 int32	902 int32	Величина порции дозатора в граммах или миллилитрах. Единица измерения определяется режимом работы дискретного выхода (регистр 40007).	2
40913 int32	912 int32	Обнуляемый счетчик объёма в РУ в мл	2
40915 int32	914 int32	Обнуляемый счетчик объёма в РУ в м ³	2
40917 int32	916 int32	Обнуляемый счетчик массы в граммах	2
40919 int32	918 int32	Обнуляемый счетчик массы в тоннах	2
40921 int32	920 int32	Обнуляемый счетчик объёма альтернативной среды в мл	2
40923 int32	922 int32	Обнуляемый счетчик объёма альтернативной среды в м ³	2

№, формат	Адрес, формат	Описание переменной	
40925	924	Регистр отключения отдельных функций. Установка бита в единицу отключает следующие функции:	доступа 2
		бит 0 – отключение аналогового выхода (на выходе устанавливается 4 мA)	
		бит 1 – отключение частотного выхода (установка в нормально открытое состояние)	
		бит 2 – отключение входа 4-20 мА	
		бит 3 – отключение входа термопреобразователя	
		бит 4 – отключение функции вычисления плотности при РУ. Используется значение, заданное в регистре 40023	
		бит 5 – отключение использования коэффициента преобразования расхода (регистра 40051)	
		бит 6 – включение имитационной поверки	
		бит 7 – отключение температурной коррекции.	
40926	925	Аддитивная поправка к показаниям датчика температуры плат. Для	2
float	float	получения действительного значения температуры плат введенное в этот регистр значение вычитается из измеренного.	
40928	927	Количество точек быстрого преобразования Фурье, используемого для расчета частоты полезного сигнала. Кодируется двумя битами следующим образом:	3
		D1 D0	
		0 0 1024 точки,	
		0 1 512 точек,	
		1 0 256 точек,	
		1 1 128 точек.	
		Биты D2-D15 не используются.	
40929 float	928 float	Максимальная зафиксированная температура электроники в градусах Цельсия	2
40931 float	930 float	Минимальная зафиксированная температура электроники в градусах Цельсия	2
40933 float	932 float	Порог амплитуды, используемый в алгоритме определения кавитации и паразитного вихреобразования	
40935 float	934 float	Температура в Ст.У., К	
40937 float	936 float	Давление в Ст.У., МПа	
40939 float	938 float	Расход, соответствующий 4 мА	2
40941 float	940 float	Расход, соответствующий 20 мА	2
40943 float	942 float	Множитель для токовой петли. Значение по умолчанию 1	2

Продолх	Продолжение таблицы В.4				
№, формат	Адрес, формат	Описание переменной	Уровень доступа		
40945	944	Сдвиг токовой петли. Значение по умолчанию 0	2		
float	float				
40947	946	Дата калибровки: число	3		
40948	947	Дата калибровки: месяц	3		
40949	948	Дата калибровки: год (в формате текущий год – 1900)	3		
40950	949	Фиксированный ток, мА	2		
float	float				
40952	951	Служебный: изменение не допускается	3		
float	float				
40954	953	Служебный: изменение не допускается	3		
float	float				
40956	955	Фиксированная частота, Гц	2		
float	float				
40958	957	Время демпфирования токовой петли, с	2		
float	float				
40960	959	Молярная доля азота в %	2		
float	float				
40962	961	Молярная доля диоксида углерода в %	2		
float	float				
40964	963	Молярная доля метана в %	2		
float	float				
40966	965	Молярная доля этана в %	2		
float	float				
40968	967	Молярная доля пропана в %	2		
float	float				
40970	969	Молярная доля н-бутана в %	2		
float	float				
40972	971	Молярная доля изобутана в %	2		
float	float				
40974	973	Молярная доля н-пентана в %	2		
float	float				
40976	975	Молярная доля изопентана в %	2		
float	float				
40978	977	Молярная доля н-гексана в %	2		
float	float				
40980	979	Молярная доля н-гептана в %	2		
float	float				

№, формат	Адрес, формат	Описание переменной	Уровень доступа
40982	981	Молярная доля н-октана в %	2
float	float		_
40984	983	Молярная доля н-нонана в %	2
float	float		
40986	985	Молярная доля н-декана в %	2
float	float		
40988	987	Молярная доля водорода в %	2
float	float		
40990	989	Молярная доля кислорода в %	2
float	float		
40992	991	Молярная доля монооксида углерода в %	2
float	float		
40994	993	Молярная доля воды/водяного пара в %	2
float	float		
40996	995	Молярная доля сероводорода в %	2
float	float		
40998	997	Молярная доля гелия в %	2
float	float		
41000	999	Молярная доля аргона в %	2
float	float		
41002	1001	Коэффициент коррекции датчика температуры	2
float	float		
41004	1003	Сдвиг нуля датчика давления	2
float	float		
41006	1005	Коэффициент коррекции датчика давления	2
float	float		
41008	1007	Динамический сдвиг нуля датчика температуры при отрицательной	2
float	float	температуре плат электроники	
41010	1009	Период сброса уровня доступа по паролю в минутах	2
41011	1010	Абсолютная влажность (для влажного нефтяного газа) в г/м³	2
float	float		
41013	1012	Конфигурация вычислителя. Кодируется следующим образом:	2
		0 - для среды "Насыщенный пар" вычисление ведется по давлению	
		1 - для среды "Насыщенный пар" вычисление ведется по температуре	
		2 - для среды "Влажный нефтяной газ" влажность задана в явном виде в мольных процентах в регистре 40994	
		3 - для среды "Влажный нефтяной газ" вычисление ведется по абсолютной влажности	

№, формат	Адрес, формат	Описание переменной	
41014	1013	Служебный: изменение не допускается	2
uint32	uint32		
41016	1015	Служебный: изменение не допускается	2
uint32	uint32		
41018	1017	Обнуляемый счетчик объема в Ст.У. в мл	2
uint32	uint32		
41020	1019	Обнуляемый счетчик объема в Ст.У. в м ³	2
uint32	uint32		
41022	1021	Служебный: изменение не допускается	2
uint32	uint32		
41024	1023	Служебный: изменение не допускается	2
uint32	uint32		
41026	1025	Обнуляемый счетчик объема в погружном режиме в мл	2
uint32	uint32		
41028	1027	Обнуляемый счетчик объема в погружном режиме в м ³	2
uint32	uint32		
41028	1027	Обнуляемый счетчик объема в погружном режиме в м ³	2
uint32	uint32		
41030	1029	Задержка в передаче сообщения через RS485, символов	2
		Длительность задержки равна времени передачи N символов при выбранной скорости передачи T = N*11/Baudrate.	
		При скорости = 38400 и N=10, T= 10*11/38400 = 2,86 мс	
41031	1030	Переменная для сброса обнуляемых счетчиков через дисплей и RS485	0
41032	1031	Базовый код измеряемой среды (для имитационной поверки)	3
41033	1032	Базовый диаметр проточной части в мм (для имитационной поверки)	3
41034	1033	Базовый К-фактор (для имитационной поверки)	3
float	float		

Приложение Г. Описание протокола «HART»

(справочное)

Команды HART версии 6 показаны в таблицах Г.1 - Г.4.

Протокол интерфейса HART соответствует спецификации протокола. Отличия описаны в примечаниях в колонке «Данные ответа». Значения в кавычках являются константами в десятичном представлении.

Уровень доступа может изменяться подачей специальной по протоколу Modbus, вводом пароля соответствующего уровня с клавиатуры дисплейной платы или включением микропереключателя SW1:1 на плате процессора (внутри электронного блока расходомера).

Изменение адреса опроса выполняется командой 6 при любом уровне доступа и также не требует выполнения команды 39.

Таблица Г.1 – Команды HART

Номер команды и функция	Данные команды	Данные ответа
0 Чтение уникального	_	Байт 0 U-8 Код типа датчика ("254")
идентификатора		Байт 1 Е Код производителя
		Байт 2 Е Тип устройства
		Байт 3 U-8 Минимальное количество преамбул необходимых устройству
		Байт 4 U-8 Ревизия универсальных команд
		Байт 5 U-8 Ревизия устройства
		Байт 6 U-8 Ревизия ПО
		Байт 7 Разделен на две части: 5 бит U-5 Ревизия аппаратной части + 3 бит Е Код физического сигнала
		Байт 8 В Флаги
		Байт 9-11 U-24 ИД устройства кол-во преамбул
		Байт 12 U-8 Минимальное количество передаваемых преамбул
		Байт 13 U-8 Максимальное количество переменных
		Байт 14-15 U-16 Счетчик изменения конфигурация
		Байт 16 В Расширенный статус
1 Чтение первой	_	Байт 0 Е PV - код единиц измерения
переменной		Байт 1-4 F Первая переменная
2 Считывание текущего	_	Байт 0-3 F Значение тока (mA)
значения тока и процентов от диапазона		Байт 4-7 F Процент от диапазона

Продолжение таблицы Номер команды и		
функция	Данные команды	Данные ответа
3 Чтение текущего	_	Байт 0-3 F Значение тока (mA)
значения тока и четырех		Байт 4 Е PV - код единиц измерения
(предустановленных)		Байт 5-8 F Первая переменная
динамических переменных		Байт 9 E SV - код единиц измерения
		Байт 10-13 F вторая переменная
		Байт 14 E TV - код единиц измерения
		Байт 15-18 F третья переменная
		Байт 19 E FV - код единиц измерения
		Байт 20-23 F четвертая переменная
		Все динамические переменные задаются в регистре #40006 протокола Modbus
6 Записать полевой	_	Байт 0 U-8 Полевой адрес
адрес		Байт 1 Е Режим токовой петли
		Примечание – При адресе отличном от 0 токовый выход устанавливается в фиксированный режим с током 4 мА.
7 Чтение конфигурации	_	Байт 0 U-8 Полевой адрес
токовой петли		Байт 1 Е Режим токовой петли
8 Чтение динамических	_	Байт 0 Е Классификация PV
переменных		Байт 1 Е Классификация SV
		Байт 3 Е Классификация TV
		Байт 4 Е Классификация FV
11 Чтение уникального идентификатора связанного с меткой	Байт 0-5 Р Метка	Как в команде 0
12 Чтение сообщения	_	Байт 0-23 Р Сообщение
13 Чтение метки,	_	Байт 0-5 Р Метка
указателя, даты		Байт 6-17 Р Указатель
		Байт 18-20 D Дата
14 Чтение информации	_	Байт 0-2 U-24 Серийный номер сенсора
о сенсоре		Байт 3 Е Код единиц измерения сенсора
		Байт 4-7 F Верхний диапазон измерения сенсора
		Байт 8-11 F Нижний диапазон измерения сенсора
		Байт 12-15 F Минимальная измеряемая величина

Продолжение таблицы Г.1

Номер команды и		
функция	Данные команды	Данные ответа
15 Чтение информации	_	Байт 0 Е Код сигнализации об ошибке
об устройстве		Байт 1 Е Код передаточной функции
		Байт 2 Е Код единиц измерения
		Байт 3-6 F Нижняя граница измерения
		Байт 7-10 F Верхняя граница измерения
		Байт 11-14 F Время демпфирования
		Байт 15 F Код режима защиты
		Байт 16 F Публичная метка
		Байт 17 В Флаги аналогового выхода
16 Чтение информации об устройстве	_	Байт 0-2 U-24 Номера финальной сборки
17 Запись сообщения	Байт 0-23 Р Сообщение	Байт 0-23 Р Сообщение
18 Запись метки,	Байт 0-5 Р Метка	Байт 0-5 Р Метка
указателя, даты	Байт 6-17 Р Указатель	Байт 6-17 Р Указатель
	Байт 18-20 D Дата	Байт 18-20 D Дата
19 Запись информации об устройстве	Байт 0-2 U-24 Номера финальной сборки	Байт 0-2 U-24 Номера финальной сборки
20 Чтение длинной метки	_	Байт 0-31 L-1 Длинная метка
21 Чтение уникального идентификатора, связанного с длинной меткой	Байт 0-31 L-1 Длинная метка	Как в команде 0
22 Запись длинной метки	Байт 0-31 L-1 Длинная метка	Байт 0-31 L-1 Длинная метка

Таблица Г.2 – Команды HART Common-practice

Taomanabi	HART Common-practice	
Номер команды и функция	Данные команды	Данные ответа
34 Запись значений демпфирования	Байт 0-3 Время демпфирования PV	Байт 0-3 Время демпфирования PV
35 Запись диапазона PV	Байт 0 U-8 Код единиц измерения Байт 1-4 F Верхняя граница диапазона Байт 5-8 F Нижняя граница диапазона	Байт 0 U-8 Код единиц измерения Байт 1-4 F Верхняя граница диапазона Байт 5-8 F Нижняя граница диапазона
38 Сброс флага конфигурация изменена	_	_
40 Вход/выход из текущего режима	Байт 0-3 ток (mA) Примечание — Для выхода из режима фиксированного тока требуется записать 0.	Байт 0-3 ток (mA)

Продолжение таблицы Г.2

Номер команды и функция	Данные команды	Данные ответа
41 Выполнение самодиагностики	_	
42 Перезагрузка устройства	_	_
45 Правка нуля токового выхода	Байт 0-3 Измеряемый ток (mA) Примечание — рекомендуется выполнять в режиме фиксированного тока 4 мА	Байт 0-3 Заданный ток (mA)
46 Правка пропорционального коэффициента	Байт 0-3 Измеряемый ток (mA) Примечание — рекомендуется выполнять в режиме фиксированного тока 20 мА	Байт 0-3 Заданный ток (mA)

Таблица Г.3 – Команды HART Special

тиолици т.о. пошинові питт ореоні		
Номер команды и функция	Данные команды	Данные ответа
79 Запись констант	Байт 0 Е Код константы (0 – амплитудный фильтр, 1 – минимальный расход)	Байт 0 Е Код константы (0 – амплитудный фильтр, 1 – минимальный расход) Байт 1 Е Тип данных (1— постоянные)
	Байт 1 Е Тип данных (1 – постоянные)	
	Байт 2-5 F Данные	

Таблица Г.4 – Статус устройства

Структура	Расшифровка	
Байт 0	Бит 0 (зарезервирован)	
Если первый бит 7 = 1,	Бит 1 Количество полученных байт превышает количество байт в команде	
	Бит 2 (зарезервирован)	
	Бит 3 Ошибка контрольной суммы	
	Бит 4 Ошибка формирования фрейма	
	Бит 5 Следующий байт посылке поступил до чтения предыдущего	
	Бит 6 Ошибка четности	
Байт 0	3 – Переданный параметр слишком велик;	
Если первый бит 7 = 1,	4 – Переданный параметр слишком мал;	
	5 – Получено слишком мало байт;	
	7 – Устройство в режиме защиты от записи;	
	8 — Неудача при обновлении, обновление в процессе работы, значение установлено равным ближайшему;	
	10 – Параметр процесса слишком мал, Нижнее значение слишком мало, Не в режиме фиксированного тока;	
	11 — В режиме моноканала, Неверный код переменной датчика, Верхнее значение диапазона слишком велико;	
	12 – Неверный код единицы измерения;	
	13 – Оба значения диапазона выходят за ограничения;	
	14— Введенное верхнее значение диапазона выходит за ограничение, Интервал слишком мал;	
	64 – Полученная команда не поддерживается	
Байт 1	Бит 0 – первичная переменная вышла за границы	
	Бит 1 – не первичная переменная вышла за границы	
	Бит 2 – насыщение аналогового выходного сигнала	
	Бит 3 – выходной ток фиксирован	
	Бит 4 – неисправность основного процессора	
	Бит 5 – холодный старт	
	Бит 6 – изменена конфигурация	
	Бит 7 – критическая неисправность прибора	